• Title/Summary/Keyword: Wheeled Inverted Pendulum

Search Result 33, Processing Time 0.022 seconds

Development of Two Wheeled Car-like Mobile Robot Using Balancing Mechanism : BalBOT VII (밸런싱 메커니즘을 이용한 이륜형 자동차 형태의 이동로봇개발 : BalBOT VII)

  • Lee, Hyung-Jik;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • This paper presents the development and control of a two wheeled car-like mobile robot using balancing mechanism whose heading control is done by turning the handle. The mobile inverted pendulum is a combined system of a mobile robot and an inverted pendulum system. A sensor fusion technique of low cost sensors such as a gyro sensor and a tilt sensor to measure the balancing angle of the inverted pendulum robot system accurately is implemented. Experimental studies of the trajectory following control task has been conducted by command of steering wheel while balancing.

  • PDF

Design of an Augmented State Feedback Controller for a Wheeled Inverted Pendulum Returning to the Origin (원점 복귀 가능한 차륜형 역진자 제어를 위한 확장 상태피드백 제어기 설계)

  • Lee, Se-Han
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2011
  • An augmented state feedback controller for a Wheeled Inverted Pendulum (WIP) is proposed in this research. The augmented state feedback controller is able to keep the WIP returning to the origin. Generally, the WIP has both stable and unstable equilibrium points. To keep the WIP over the unstable equilibrium point, the WIP consistently is being controlled. A simple state feedback controller is letting the WIP out of the origin when the center of gravity of the WIP locates out of the schematic center line. In some case of applications, it may not be desirable that the WIP is drifting out of the initial location. The proposed augmented state feedback controller is able to keep the WIP at the initial location whether its center of gravity lies out of the center line or not. Numerical simulations are carried out to show the validation of the augmented sated feedback controller.

A Derivation of the Equilibrium Point for a Controller of a Wheeled Inverted Pendulum Running on an Inclined Road (경사면을 주행하는 차륜형 역진자의 평형점 상태에 관한 연구)

  • Lee, Se-Han;Kang, Jae-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.72-78
    • /
    • 2012
  • In this research an equilibrium point of a Wheeled Inverted Pendulum (WIP) running on an inclined road is derived and validated by some experiments. Generally, The WIP has stable and unstable equilibrium point. Only unstable equilibrium point is interested in the research. To keep the WIP on the unstable equilibrium point, the WIP is consistently controlled. A controller for the WIP needs a reference state for the equilibrium point. The reference state can be obtained by studying an equilibrium point of the WIP. This research is deriving dynamic equations of the WIP running on the inclined road and equilibrium of it based on statics. Several experiments are carried out to show the validation of the equilibrium point.

A Derivation of the Equilibrium Point for a Controller of a Wheeled Inverted Pendulum with Changing Its Center of Gravity (무게중심이 변동되는 차륜형 역진자의 평형점 상태에 관한 연구)

  • Lee, Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.496-501
    • /
    • 2012
  • An equilibrium point of a WIP (Wheeled Inverted Pendulum) with changing its center of gravity is derived and validated by various numerical simulations. Generally, the WIP has two equilibrium points which are unstable and stable one. The unstable one is interested in this study. To keep the WIP over the unstable equilibrium point, the WIP is consistently being adjusted. A state feedback controller for the WIP needs a control reference for the equilibrium point. The control reference can be obtained by studying an equilibrium point of the WIP based on statics. By using Lagrange method, this study is deriving dynamic equations of the WIP both with and without changing its center of gravity. Various numerical simulations are carried out to show the validation of the equilibrium point.

Neural Network Control of a Two Wheeled Mobile Inverted Pendulum System with Two Arms (두 팔 달린 두 바퀴 형태의 모바일 역진자 시스템의 신경회로망 제어)

  • Noh, Jin-Seok;Kim, Hyun-Wook;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.652-658
    • /
    • 2010
  • This paper presents the implementation and control of a two wheeled mobile robot(TWMR) based on a balancing mechanism. The TWMR is a mobile inverted pendulum structure that combines an inverted pendulum system and a mobile robot system with two arms instead of a rod. To improve robustness due to disturbances, the radial basis function (RBF) network is used to control an angle and a position at the same time. The reference compensation technique(RCT) is used as a neural control method. Experimental studies are conducted to demonstrate performance of neural network controllers. The robot are implemented with the remote control capability.

Neural Network PID Controller for Angle and Speed Control of Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 각도 및 속도 제어를 위한 신경회로망 PID 제어기)

  • Kim, Young-Doo;An, Tae-Hee;Jung, Gun-Oo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1871-1880
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum robot, i.e., Segway type robot that is a convenient and easily handled vehicle is designed to have more stable balancing and faster velocity control compared to the conventional method. First, a widely used PID control structure is applied to the two wheeled inverted pendulum robot and proper PID control gains for some specified weights of users are obtained to get accurate balancing and velocity control by use of experimental trial-and-error method. Next, neural network is employed to generate appropriate PID control gains for arbitrarily selected weight. Here the PID gains based on the trial-and-error method are used as training data. Simulation study has been carried out to find that the performance of the designed controller using the neural network is more excellent than the conventional PID controller in terms of faster balancing and velocity control.

Application to Stabilizing Control of Nonlinear Mobile Inverted Pendulum Using Sliding Mode Technique

  • Choi, Nak-Soon;Kang, Ming-Tao;Kim, Hak-Kyeong;Park, Sang-Yong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a sliding mode controller based on Ackermann's formula and applies it to stabilizing a two-wheeled mobile inverted pendulum in equilibrium. The mobile inverted pendulum is a system with an inverted pendulum on a mobile cart. The dynamic modeling of the mobile inverted pendulum was established under the assumptions of a cart with no slip and a pendulum with only planar motion. The proposed sliding mode controller was based upon a class of nonlinear systems whose nonlinear part of the modeling can be linearly parameterized. The sliding surface was obtained in an explicit form using Ackermann's formula, and then a control law was designed from reachability conditions and made the sliding surface attractive to the equilibrium state of the mobile inverted pendulum. The proposed controller was implemented in a Microchip PIC16F877 micro-controller. The developed overall control system is described. The simulation and experimental results are presented to show the effectiveness of the modeling and controller.

A Controller Based on Velocity Estimator for a Wheeled Inverted Pendulum Running on the Inclined Road (경사면을 주행하는 차륜형 역진자를 위한 속도 추정기 기반 제어기 설계)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • In this research a controller based on velocity estimator for a Wheeled Inverted Pendulum (WIP) is designed and various numerical simulation studies are carried out. The WIP has stable and unstable equivalent points. To Keep the unstable equilibrium point, a controller should control carefully the wheels persistently. There are angle, angular velocity, displacement, and velocity of the WIP for controller inputs. The velocity is obtained by differentiating the encoder signals from the motor and is subject to the resolution of the encoder. An improved velocity detection method is proposed based on low resolution encoder and velocity estimator. Various numerical simulations are carried out for showing the validation of the velocity estimator in case of the inclined road condition.

The Wheeled Inverted Pendulum Mobile Robot Control Using Gyroscope and Accelerometer Sensor (자이로와 가속도 센서를 이용한 차륜형 도립진자 이동로봇 제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.703-708
    • /
    • 2012
  • This paper proposes the improvement of control performance in the wheeled inverted mobile robot system. and describes the modeling of a wheeled inverted pendulum type mobile robot driven by two different wheels for the position and velocity control. The system is sensitive on the parameter variation, therefore control signal should change to maintain desired state of the system in every instant. we designed proportional-plus-integral controller for our system, After linearization, the system was still unstable, throughout stability analysis of the system, we designed the values of the gains of a proportional-plus-integral controller. From the experimental results, we can find that the performance of the proposed method is better than of the manual tuning method.

Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion (횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계)

  • Kim, Sangtae;Seo, Jeongmin;Kwon, SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.