• Title/Summary/Keyword: Wheel-base

Search Result 88, Processing Time 0.022 seconds

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

THE EFFECT OF SANDWICH TECHNIQUE USING FLOWABLE COMPOSITE RESIN BASE ON THE MICROLEAKAGEIN CLASS II CAVITIES OF MOLAR (구치부 제2급 와동에서 고흐름성 복합레진을 이용한 적층 충전술식의 미세누출에 미치는 영향)

  • Lee, Kang;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.502-514
    • /
    • 2002
  • The aim of this study was to evaluate the marginal adaptation of direct class II sandwich restoration with packable composites(P-60), resin modified glass ionomer cement(Fuji-II LC), flowable compomer(Dyract Flow), flowable composites(Filtek Flow) in comparison with total bond restorations. In addition, for sandwich restorations, influence of different sandwich techniques was also evaluated. Large butt-joint box typed class II cavites with cervical margins 1mm below the cemento-enamel junction were cut into 70 extracted human molars. The cavities(7 groups, n=10) were filled using a closed/open sandwich restoration or total bond restoration technique with materials according to the manufacturer's recommandation using the single-component bonding agent for each system. Teeth were thermocycled 500 times between 5$^{\circ}C$ and 55$^{\circ}C$ with 30-second dwell time. The teeth were then coated with nail polish 1mm short of the restoration, placed in a 2% methylene blue for 24 hours, and sectioned with diamond wheel. Sections were examined with a stereoscope to determine the extent of microleakage. Dentine /Cementum margins were analyzed for microleakage on scale of 0(no leakage) to 4(entire axial wall) and interface between materials, on scale of 0(no leakage) to 3(axial wall). Results were evaluated with Kruskal Wallis Test, corrected for ties, to determine whether there were statistically significant differences among the seven groups. Pairs of groups were analyzed using the Student-Newman-Keuls Method and Dunn s Method. The results were as follows : 1. All groups showed some micoleakage in cervical portion. But there were no microleakage in interface between materials. 2. Closed sandwich restorations with Fuji-II LC and Filtek Flow had significantly lower leakage rating than total restorations with only P-60. However, open sandwich restorations with Dyract Flow showed significantly higher (P<0.05) 3. Closed sandwich restorations had significantly lower leakage rating than total restorations. However open sandwich restoration s showed significantly higher (P<0.05). 4. Sandwich restorations with Fuji-II LC were iou$.$or leakage than only P-60. Filtek Flow, Dyract Flow. But there were no statistically differences among the materials. From the results above, it could be concluded, closed sandwich restorations was effective in reducing microleakage of class II restorations. The best results showing the least microleakage were for the closed sandwich technique with Fuji-II LC and Filtek Flow.

Evaluation of Performance and Construction the New National Test Road Sites of Modified Asphalt (신설국도의 시험시공을 통한 표층용 개질 아스팔트 공용성 평가)

  • Cho, Gyu-Tae
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.43-49
    • /
    • 2002
  • Asphalt pavements have to perform under the conditions of heavily-loaded vehicles due to the industrialization and large temperature variance between the summer and the winter. Due to these factors, a characteristics change of early permanent deformation becomes a big issue, and to remedy this problem many research to use modified asphalt are being widely conducted. However, most of the modified asphalt is being paved after milling the surface course and applying tackcoating, and it is being used mostly for the repair and maintenance purpose rather than pavement of new national road. The purpose of this investigation is to obtain some fundamental data for the evaluation of the performance and long-term performance of the construction material mixtures by the laboratory test and field experiments. For the field experiment, 200m of two-lanes national road, that is being paved for the new national road under the direction of Pusan Regional Construction Management Office, was paved with SBS PMA and PSMA asphalt mixtures, which are an modified asphalt mixtures used for the surface course, on top of the base course paved with other modified asphalt mixtures. The remaining section of the new national road was paved with dense grade mixture. The laboratory tests assessed and analyzed the mixture characteristics by Marshall's stability test, strength tests and wheel-tracking test. On the basis of the evaluation result of the temperature control and roughness of the newly constructed road at the field experiment site, it is desired to evaluate and identify the most economic modified asphalt mixtures by long-term performance evaluation and LCC(Life Cycle Cost) analysis in order to apply the test result to the design of new road construction in the future.

  • PDF

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Development of a Dynamic Offtracking Model on Horizontal Curve Sections (Based on Articulated Vehicles) (도로 평면곡선부에서 동적궤도이탈모형 개발에 관한 연구 (굴절차량을 중심으로))

  • 최재성;김우현
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.115-128
    • /
    • 2002
  • Dislike the tangent sections, the horizontal curve sections of roads should be designed, considering several factors : one of such factors is widening. In other words, since widening results from that when a vehicle runs on the horizontal curve sections, the rear wheels of the vehicle run not along with tracks of the front wheels but out of that, such offtracking should be exactly investigated and reflected in design of the curve sections. Especially in the case of industrial roads which semi-trailers and large trucks run frequently or arterial roads with small curve radiuses in mountainous regions. serious offtracking Phenomenons result in increasing the risk of accidents. decreasing the capacities and jeopardizing pedestrians' safety on the curve sections. For the offtracking, widening amounts of roads has been determined under the traditional presumption that vehicles run at a low speed and there is no superelevation. In fact, however, since the vehicles run at a high speed as well as at a low speed and the superelevation is installed on the horizontal curve sections in the structural aspect of roads, the existing standards for installing widening have a limitation to reflect exactly actual Phenomenons. In particular, for articulated wheel axles of a tractor and a trailer and long articulated vehicles, not only the offtracking degree is very high but also the interpretation shows different aspects from one of single axles. Comparing and reviewing the results of Korean and foreign studies related to the trailer offtracking model theory and the standards for installing widening, this study developed a realistic dynamic offtracking model which considers geometric structures of roads and speeds of vehicles, suggested how to measure widening with this model and examined applicability of the model. The findings of this study are as follows ; First. a dynamic offtracking model. which considers dynamic movements of a tractor and a trailer and the superelevation, was developed. Second, a new method to measure widening with the developed dynamic offtracking model was developed and a method to measure widening with swept path width was suggested as well. Finally, validity of the current standards for installing widening was examined by determining actual offtracking and widening amounts with the developed model and the applicability was investigated through the case studies. Compared with the existing offtracking models, the dynamic offtracking model developed in this study can reflect practically vehicle speed. dimension and geometric structural aspects of roads. In conclusion, the meaning of this study is that it reviews validity of the current standards for installing widening and provides a base to establish such standards by suggesting new methods to measure the widening with this dynamic offtracking model.

Evaluation of the Temperature Drop Effect and the Rutting Resistance of Moisture Retaining-Porous Asphalt Pavement Using Accelerated Pavement Testing (포장가속시험을 이용한 보수형 배수성 포장의 온도저감 효과 및 소성변형 저항특성 연구)

  • Kwak, Byoung-Seok;Suh, Young-Chan;Song, Chul-Young;Kim, Ju-Won
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.97-109
    • /
    • 2009
  • One of the main causes of asphalt rutting is high temperature of the pavement. Nevertheless, there has been few research on lowering the pavement temperature for reducing rutting. This study investigated the performance characteristics of moisture-retaining porous asphalt pavement, which is known to have a temperature reducing effect. The purpose of this study is to quantify the temperature reducing effect of moisture-retaining porous asphalt pavement and its effect of reducing rutting through Accelerated Pavement Testing(APT). Additionally, the possibility of reducing the thickness of the pavement in comparison to general dense grade pavement by analyzing structural layer coefficient of moisture retaining pavement. A total of three test sections consisting of two moisture-retaining porous asphalt pavement sections and one general dense-grade porous asphalt pavement section were constructed for this study. Heating and spraying of water were carried out in a regular cycle. The loading condition was 8.2 ton of wheel load, the tire pressure of $7.03kgf/cm^2$, and the contact area of $610cm^2$. The result of this experiment revealed that the temperature reducing effect of the pavement was about $6.6{\sim}7.9^{\circ}C$(average of $7.4^{\circ}C$) for the middle layer and $7.9{\sim}9.8^{\circ}C$(average of $8.8^{\circ}C$) for surface course, resulting in a rutting reduction of 26% at the pavement surface. Additionally, the structural layer coefficient of moisture retaining pavement measured from a laboratory test was 0.173, about 1.2 times that of general dense grade pavement. The general dense-grade porous asphalt pavement test section exhibited rutting at all layers of surface course, middle layer, and base layer, while the test sections of moisture-retaining porous asphalt pavement manifested rutting mostly at surface course only.

  • PDF