• Title/Summary/Keyword: Wheel Moment

Search Result 117, Processing Time 0.032 seconds

Analytical & Experimental Study on Microvibration Effects of Satellite (인공위성의 미소 진동 영향성에 관한 해석 및 실험적 연구)

  • Park, Geeyong;Lee, Dae-Oen;Yoon, Jae-San;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.533-539
    • /
    • 2013
  • Number of components and payload systems installed in satellites were found to be exposed to various disturbance sources such as the reaction wheel assembly, the control moment gyro, coolers, and others. A micro-level of vibration can introduce jitter problems into an optical payload system and cause significant degradation of the image quality. Moreover, the prediction of on-orbit vibration effects on the performance of optical payloads during the development process is always important. However, analyzing interactions between subsystems and predicting the vibration level of the payloads is extremely difficult. Therefore, this paper describes the analytical and experimental approach to microvibration effects on satellite optical payload performance with integrated jitter analysis framework, micro vibration emulator and satellite structure testbed.

  • PDF

Pobabilistic Design of Asphalt Pavement Surface Courae (아스팔트 鋪裝道路의 確率論的 表層設計)

  • Kim, Gwang-U;Yeon, Gyu-Seok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.66-77
    • /
    • 1992
  • A prototype probabilistic approach to thickness design for asphalt pavement surface course was developed using first-order second moment probability model. The tensile strain (load effect) developing at the bottom of surface layer due to the wheel load and the critical strain (resistance) of asphalt concrete were used as random variables for pavement reliability analysis. Based on the parameters for load effect and resistance data collected from reference and field, simulated data were generated by Monte Carlo method for reliability evaluation of the pavement for a typical rural highway. Thickness of pavement surface course was defined in terms of target reliability of the pavement, growth factor of traffic, design life of pavement and resistance of the asphalt concrete to be placed on the pavement. According to these rationales, prototype thickness design chrats were sugested through example studies. From these, similar design charts can be developed for many pavements if appropriate data and target reliability are determined.

  • PDF

Vehicle Stability Control for a 4WD HEV using Regenerative Braking and Electronic Brake force Distribution (회생제동과 EBD를 이용한 4WD HEV의 차량 안정성 제어)

  • Kim Donghyun;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2005
  • A vehicle stability control logic for 4WD hybrid electric vehicle is proposed using the regenerative braking of the rear motor and electronic brake force distribution module. Performance of the stability control logic is evaluated for J-turn and single lane change. It is found from the simulation results that the regenerative braking at rear motor is able to provide improved stability compared with the vehicle performance without my stability control. Additional improvement can be achieved by applying the regenerative braking plus electronic brake farce distribution control. It is expected that the regenerative braking offers additional improvement of the fuel economy as well as the vehicle stability control.

Support Deflection Effects in Slabs with Beam and Girder (보-거더 시스템 슬래브에서 지지부 처짐영향에 관한 연구)

  • 곽효경;송종영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.55-62
    • /
    • 1997
  • The support deflection effects in slabs with beams and girders are reviewed for both cases of the uniformly distributed and concentrated wheel loads. The differences in structural behavior according to the variation of support stiffness namely, the moment of inertia of beam and gilder, and the slab thickness, are calculated using the finite element method. Besides. the correction factors which can consider the support deflection effects in slab design are proposed by regression based on the obtained numerical results. Through the comparision studies of slabs with different boundary conditions, the importance for the consideration of support deflection effects in design are emphasized.

  • PDF

Investigation on Electromagnetic Field Characteristics of Interior Permanent Magnet Synchronous Machine Considering Harmonics of Phase Current due to Influence of Mechanical Energy Storage System

  • Park, Yu-Seop
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • This paper investigates the influence of mechanical energy storage on the interior permanent magnet synchronous machine (IPMSM) when it is operated in the generating mode. An IPMSM with six-poles and nine-slots employing concentrated coil winding type is considered as the analysis model, and a surface-mounted permanent magnet synchronous motor directly connected to a heavy wheel is applied as the mechanical energy storage system by using the moment of inertia. Based on the constructed experimental set-up with manufactured machines and power converters, the generated electrical energy is converted into the mechanical energy, and the electromagnetic filed characteristics of IPMSM are subsequently investigated by applying the measured phase current of IPMSM based on finite element method. Compared to the characteristics in a no-load condition, it is confirmed that the magnetic behavior, radial force, and power loss characteristics are highly influenced by the harmonics of the phase current due to the mechanical energy storage system.

Establishment of the maintenance system for rolling stock (철도차량 유지보수 체계 구축)

  • 이명호;이현종;권정원
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.408-413
    • /
    • 2002
  • From the moment that electricity is applied to a relay, a wheel turned, or a valve opened, the process leading to the need for maintenance begins, The uninitiated will tell you that the Maintenance man is someone who repairs something when it has gone wrong. Unfortunately, in any large engineering concern, such as a railway, it is not possible to work on the principle that only when something breaks down should it get any attention. The failure of one contact, diode or bearing could well stop not only the assembly of which it is a part, but the flow line or process, with loss of revenue, and clientele, and often with effects on the safety of both staff and the traveling public. So, we have to establish the reliable and cost-effective maintenance system to resolve these problems.

  • PDF

Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum (모바일 역진자의 수평유지와 주행을 위한 실시간 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.157-163
    • /
    • 2011
  • In this paper, configuration control for the Horizontal Maintenance and driving of the mobile inverted pendulum robot has been studied using ARS(Attitude Refrence System). The inverted pendulum technique is getting attention and there have been many researches on the seg-way since the US. Using its 2 freedom, a mobile inverted pendulum robot can move in various modes and Our robot performs goal reaching ARS. Mobile inverted pendulum robot fall down to the forward or reverse direction to converge to the stable point. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this paper we present a two wheel robot system for an autonomous mobile robot. This paper realized the robot control method which is much simpler but able to get desired performance by using the IMU and PID control.

Modelling and Analysis of Roll-Type Steel Mat for Rapid Stabilization of Permafrost (II) - Parametric Analysis - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(II) - 변수해석 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.109-117
    • /
    • 2014
  • Using the finite element analysis model presented in accompanying paper, parametric study was performed in this paper. Various parameters were considered such as the width of wheel loads-induced permanent plastic deformation, backfill, equivalent thickness and orthogonal characteristic of steel mats. The effects of these parameters were analyzed for vertical and rotational displacements, maximum moment and tensile stress. From the parametric studies, it is found that great vertical deflection and tensile stress above allowable flexural tensile strength are developed in steel mats by the wheel loads-induced permanent plastic deformation. Backfill or increasing the thickness of steel mats is a feasible solution on this problem.

Analytical Method for Bending Moment of Slab-on-Steel-Girder Bridge (강판형교 바닥판 모멘트의 해석기법)

  • Park, Nam Hoi;Choi, Jin Yu;Yu, Chul Soo;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.17-28
    • /
    • 2000
  • The current specifications for bridge decks requires the same amount of upper and lower reinforcement mats. There have been many empirical activities that the partial elimination of upper reinforcing bars was not caused the structural integrity of a deck. A simplified method is derived based on thin plate theory for three and four-girder-span bridge decks. A simplified method for bridge deck considering the effect of girder deflection is proposed based on a closed-form solution that shows good agreement with the results of finite element models. In this research, a new design approach for deck slabs is proposed based on the simplified method. The negative bending moments in a deck can be evaluated with the simplified method based on the position of a wheel load, the aspect ratio and relative stiffness and the span length. This new approach can lead to a significant reduction of the quantity of the top reinforcing steel bars in a deck. Reducing the quantify of the top reinforcement not only reduces the construction costs for bridge decks, but also reduces the corrosion of reinforcement to a minimum.

  • PDF

A Study on Partial-Load Performance Experiment & Analysis for Dynamic Transient Effect of Free Shaft Gas Turbine Engine (분리 축 가스터빈엔진의 동역학적 천이효과에 의한 부분부하성능 시험 및 해석에 관한 연구)

  • 김경두;이원중;양수석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.183-188
    • /
    • 2003
  • The present work was conducted to build a propulsion system for an airship. For this purpose, free shaft gas-turbine was modified to produce electrical power. he experiments were carried out to analyze the driving rotor condition at various power shaft loads. From this analysis, an appropriate damping device was required, and the changeable inertial moment from the fly-wheel was applied. Without the appropriate damping device, instability was found, and it was resulted as power loss. Also the amount of inertial moment was certified by the performance of dynamic transient effects from the engine test results. Knowledge gained from this research could benefit the propulsion and power conversion community by increasing the better understanding of shaft loads and inertial effects.

  • PDF