• 제목/요약/키워드: Wheel/Rail Noise

검색결과 114건 처리시간 0.026초

유한요소법과 경계요소법을 이용한 한국형 고속전철의 전동소음 예측 (Prediction of Rolling Noise of a Korean High-Speed Train Using FEM and BEM)

  • 양윤석;김관주
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.444-450
    • /
    • 2000
  • Wheel-rail noise is normally classified into three catagories : rolling impact and squeal noise. In this paper rolling noise caused by the irregularity between a wheel and a rail is analysed as follows: The irregularity between the wheel and the rail is assumed as linear superposition of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory and then contact force between the wheel and the rail is calculated. vibration of the rail and the wheel is calculated theoretically by receptance method or FEM depending on the geometry of the wheel or the rail for the frequency range of 100-500 Hz important for noise generation. The radiation noise caused by those vibration response is computed by BEM To verify this analysis tools rolling noise is calculated by proposed analysis steps using typical roughness data and these results are compared with experimental rolling noise data. This analysis tools show reasonable results and finally used for the prediction of the Korean high speed train rolling noise.

  • PDF

Investigation of the Dynamic Properties of Railway Tracks using a Model for Calculation of Generation of Wheel/Rail Noise

  • Koh, Hyo-In;Nordborg, Anders
    • International Journal of Railway
    • /
    • 제7권4호
    • /
    • pp.109-116
    • /
    • 2014
  • For optimization of a low-noise track system, rail vibration and noise radiation needs to be investigated. The main influencing parameters for the noise radiation and the quantitative results of every track system can be obtained using a calculation model of generation and radiation of railway noise. This kind of model includes contact modeling and the calculation model of the dynamic properties of the wheel and the rail. This study used a nonlinear wheel/rail interaction model in the time domain to investigate the excitation of the rolling noise. Wheel/rail response is determined by time integrating Green's function of the rail together with force impulses from the wheel/rail contact. This model and the results of the study can be used for supporting calculation with the conventional model by an addition of the contributions due to nonlinearities to the roughness spectrum.

철도차량의 전동음 예측에 관한 연구 -차륜과 레일의 소음 기여도 분석- (A Study on Prediction of Rolling Noise for Railway -Noise Contribution of Wheels and Rail-)

  • 김재철;구동회
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.486-492
    • /
    • 2000
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel /rail surface on tangent track in the absence of discontinuities such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are treansmitted through the wheel and rail structures exciting resonances of the wheel and travelling waves in the rail. Then these vibrations radiate noise to the wayside. In this paper we predict the rollingnoise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our prediction. these results show in good agreement between 500 Hz and 3150 Hz.

  • PDF

FEM과 BEM을 이용한 한국형 고속전철의 전동소음 예측 (Prediction of Rolling Noise of Korean Train Express Using FEM and BEM)

  • 김관주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.555-564
    • /
    • 2001
  • Wheel-rail noise is normally classified into three catagories : rolling, squeal and impact noise. In this paper, rolling noise caused by the irregularity between a wheel and rail is analysed as follows: The irregularity between the wheel and rail is assumed as combination of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory, and then contact force between the wheel and rail is calculated. Vibration of the rail and wheel is calculated theoretically by receptance method or FEM depending on the geometry of wheel or rail for the frequency range of 100-5000Hz, important for noise generation. The radiation caused by those vibration is computed by BEM. To verify this analysis tools, rolling noise is calculated by preceding analysis steps using typical roughness data and it is compared with experimental rolling noise data. This analysis tools show reasonable results and used for the prediction of KTX rolling noise.

  • PDF

레일 조도가 차륜-레일 접촉 소음에 미치는 영향 (Study on the Effect of Rail Roughness in Wheel-Rail Contact Noise)

  • 이찬우;김대상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.161-164
    • /
    • 2010
  • The surface roughness of wheels and rails are known to be major contributory factors in wheel-rail rolling noise. Generally, the rail roughness was greater than the wheel roughness. Generally, rolling noise sizes and noise level in compliance with wheel/rail roughness almost are reported with the fact that is similar. Rolling noise important factors rightly being in compliance with roughness of contact point regions of the wheel/the rail, presented from the present paper.

  • PDF

차륜/레일에 의한 전동음에 관한 연구 (A Study on Wheel/Rail Rolling Noise)

  • 김재철;유원희;문경호;구동회
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.163-171
    • /
    • 1999
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel/rail surface on tangent tack in the absence of discontinuities, such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are transmitted through the wheel and rail structures, exciting resonances of the wheel and travelling waves ill tile rail. Then these vibrations radiate noise to the wayside. In this paper, we predict the rolling noise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our predication these results show in good agreement between 500 ㎐ and 3150㎐.

  • PDF

철도차량 운행시 차륜방사소음 저감장치에 관한 연구 (A Study on Wheel Noise Reduction Device for Railway Vehicle)

  • 이병철;이진영;호경찬;이용현;김건영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1011-1016
    • /
    • 2010
  • The noise emitted during train operation is generated with various reasons. It is known that the major noise generation is classified according to the ranges of train speed; that is, engine noise at lower speed range, rolling noise at medium speed range, and air-borne noise at higher speed range. These noises are transmitted in combined form with the noises generated from track components and under-carriage, etc. The rolling noise as a major noise at medium speed range is caused by the vibration occurred at wheel/rail interface. The vibration occurred at wheel/rail interface is transmitted to wheel and rail, and this vibration is emitted from wheel and rail as a noise. The object of this study is to investigate the effect of wheel damper of low noise wheel. In this study theoretical and experimental analysis is performed by numerical model calculations and impact test.

  • PDF

철도레일의 방사소음 측정을 위한 간이용 방음박스 (A Study on Soundproof Box for Measuring the Noise Emitted from Rail)

  • 호경찬;이병철;이용현;김건영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.119-126
    • /
    • 2009
  • The noise emitted during train operation is generated with various reasons. It is known that the major noise generation is classified according to the ranges of train speed; that is, engine noise at lower speed range, rolling noise at medium speed range, and air-borne noise at higher speed range. These noises are transmitted in combined form with the noises generated from track components and under-carriage, etc. The rolling noise as a major noise at medium speed range is caused by the vibration occurred at wheel/rail interface. The vibration occurred at wheel/rail interface is transmitted to wheel and rail, and this vibration is emitted from wheel and rail as a noise. In this paper, a soundproof box which can simply measure the noise emitted from rail and analyze the characteristics of the measured noise is studied.

  • PDF

철도 차륜 및 레일 진동 특성 해석을 통한 전동 소음 모델 연구 (Study on the Rolling Noise Model Using an Analysis of Wheel and Rail Vibration Characteristics)

  • 장승호;유정수
    • 한국철도학회논문집
    • /
    • 제16권3호
    • /
    • pp.175-182
    • /
    • 2013
  • 전동 소음은 철도의 주요한 소음 중 하나이며, 차륜과 레일의 음향 조도에 의해 차륜 및 레일이 진동하면서 발생한다. 이러한 전동 소음의 저감 대책을 수립하기 위해서는 관련 인자들의 영향을 파악할 수 있는 예측모델이 필요하다. 본 논문에서는 차륜과 레일의 진동 특성을 이용해 전동 소음을 예측하기 위한 모델링에 관해 다루었다. 슬라브 도상 궤도에 대하여 1단 이산 탄성 지지 구조를 가진 보로 모델링 하였으며, 차륜 진동은 유한요소법을 이용한 수치해석을 적용하였다. 수직 및 수평방향 차륜-레일 집촉력들의 연성은 선형 Hertzian 접촉이론으로 모델링 하였고, 차륜과 레일의 진동 응답을 계산한 후 방사되는 소음을 예측하였다. 예측 모델의 신뢰성을 검증하기 위하여 시험차량에 대해 전동 소음을 측정하였다. 예측치가 측정치와 잘 일치하였으며, 특히 전동 소음이 주요하게 기여하는 200~4000Hz 주파수 대역에서 유사한 경향으로 나타남을 확인하였다.

지하철 곡선부소음과 차륜 마모와의 관계에 관한 연구 (A Study on Relationship between Curving Noise and Wheel Wear in Seoul Subway System)

  • 유원희;허현무;고효인;박준혁;최용운
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.85-93
    • /
    • 2009
  • There are many curves in Seoul subway system. Therefore, the noise from subway system in curved line gives displeasure to passenger. The subway noise in curved line is affected not only by rail condition but also wheel condition and dynamic characteristics. The railway curving noise can be divided into 2 categories. The first is the noise due to stick-slip between wheel tread and rail head, and the second is one by wheel flange contact on rail side. Because of these phenomena - stick-slip and wheel flange contact - wheels are worn seriously. In this study the curving noise was reviewed by using eigen-mode of wheel and waterfall plot which shows noise level in time-frequency domain. And also those were reviewed in viewpoint of stick-slip noise and wheel flange contact noise. Finally, the relationship between curving noise and wheel wear was studied.