• Title/Summary/Keyword: Wheel/Rail Noise

Search Result 114, Processing Time 0.028 seconds

Prediction of Rolling Noise of a Korean High-Speed Train Using FEM and BEM (유한요소법과 경계요소법을 이용한 한국형 고속전철의 전동소음 예측)

  • 양윤석;김관주
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.444-450
    • /
    • 2000
  • Wheel-rail noise is normally classified into three catagories : rolling impact and squeal noise. In this paper rolling noise caused by the irregularity between a wheel and a rail is analysed as follows: The irregularity between the wheel and the rail is assumed as linear superposition of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory and then contact force between the wheel and the rail is calculated. vibration of the rail and the wheel is calculated theoretically by receptance method or FEM depending on the geometry of the wheel or the rail for the frequency range of 100-500 Hz important for noise generation. The radiation noise caused by those vibration response is computed by BEM To verify this analysis tools rolling noise is calculated by proposed analysis steps using typical roughness data and these results are compared with experimental rolling noise data. This analysis tools show reasonable results and finally used for the prediction of the Korean high speed train rolling noise.

  • PDF

Investigation of the Dynamic Properties of Railway Tracks using a Model for Calculation of Generation of Wheel/Rail Noise

  • Koh, Hyo-In;Nordborg, Anders
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.109-116
    • /
    • 2014
  • For optimization of a low-noise track system, rail vibration and noise radiation needs to be investigated. The main influencing parameters for the noise radiation and the quantitative results of every track system can be obtained using a calculation model of generation and radiation of railway noise. This kind of model includes contact modeling and the calculation model of the dynamic properties of the wheel and the rail. This study used a nonlinear wheel/rail interaction model in the time domain to investigate the excitation of the rolling noise. Wheel/rail response is determined by time integrating Green's function of the rail together with force impulses from the wheel/rail contact. This model and the results of the study can be used for supporting calculation with the conventional model by an addition of the contributions due to nonlinearities to the roughness spectrum.

A Study on Prediction of Rolling Noise for Railway -Noise Contribution of Wheels and Rail- (철도차량의 전동음 예측에 관한 연구 -차륜과 레일의 소음 기여도 분석-)

  • 김재철;구동회
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.486-492
    • /
    • 2000
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel /rail surface on tangent track in the absence of discontinuities such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are treansmitted through the wheel and rail structures exciting resonances of the wheel and travelling waves in the rail. Then these vibrations radiate noise to the wayside. In this paper we predict the rollingnoise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our prediction. these results show in good agreement between 500 Hz and 3150 Hz.

  • PDF

Prediction of Rolling Noise of Korean Train Express Using FEM and BEM (FEM과 BEM을 이용한 한국형 고속전철의 전동소음 예측)

  • 김관주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.555-564
    • /
    • 2001
  • Wheel-rail noise is normally classified into three catagories : rolling, squeal and impact noise. In this paper, rolling noise caused by the irregularity between a wheel and rail is analysed as follows: The irregularity between the wheel and rail is assumed as combination of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory, and then contact force between the wheel and rail is calculated. Vibration of the rail and wheel is calculated theoretically by receptance method or FEM depending on the geometry of wheel or rail for the frequency range of 100-5000Hz, important for noise generation. The radiation caused by those vibration is computed by BEM. To verify this analysis tools, rolling noise is calculated by preceding analysis steps using typical roughness data and it is compared with experimental rolling noise data. This analysis tools show reasonable results and used for the prediction of KTX rolling noise.

  • PDF

Study on the Effect of Rail Roughness in Wheel-Rail Contact Noise (레일 조도가 차륜-레일 접촉 소음에 미치는 영향)

  • Lee, Chan-Woo;Kim, Dae-Sang
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.161-164
    • /
    • 2010
  • The surface roughness of wheels and rails are known to be major contributory factors in wheel-rail rolling noise. Generally, the rail roughness was greater than the wheel roughness. Generally, rolling noise sizes and noise level in compliance with wheel/rail roughness almost are reported with the fact that is similar. Rolling noise important factors rightly being in compliance with roughness of contact point regions of the wheel/the rail, presented from the present paper.

  • PDF

A Study on Wheel/Rail Rolling Noise (차륜/레일에 의한 전동음에 관한 연구)

  • 김재철;유원희;문경호;구동회
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.163-171
    • /
    • 1999
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel/rail surface on tangent tack in the absence of discontinuities, such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are transmitted through the wheel and rail structures, exciting resonances of the wheel and travelling waves ill tile rail. Then these vibrations radiate noise to the wayside. In this paper, we predict the rolling noise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our predication these results show in good agreement between 500 ㎐ and 3150㎐.

  • PDF

A Study on Wheel Noise Reduction Device for Railway Vehicle (철도차량 운행시 차륜방사소음 저감장치에 관한 연구)

  • Lee, Byoung-Chul;Lee, Jin-Young;Ho, Kyoung-Chan;Lee, Yong-Hyun;Kim, Gun-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1011-1016
    • /
    • 2010
  • The noise emitted during train operation is generated with various reasons. It is known that the major noise generation is classified according to the ranges of train speed; that is, engine noise at lower speed range, rolling noise at medium speed range, and air-borne noise at higher speed range. These noises are transmitted in combined form with the noises generated from track components and under-carriage, etc. The rolling noise as a major noise at medium speed range is caused by the vibration occurred at wheel/rail interface. The vibration occurred at wheel/rail interface is transmitted to wheel and rail, and this vibration is emitted from wheel and rail as a noise. The object of this study is to investigate the effect of wheel damper of low noise wheel. In this study theoretical and experimental analysis is performed by numerical model calculations and impact test.

  • PDF

A Study on Soundproof Box for Measuring the Noise Emitted from Rail (철도레일의 방사소음 측정을 위한 간이용 방음박스)

  • Ho, Kyoung-Chan;Lee, Byoung-Chul;Lee, Yong-Hyun;Kim, Gun-Young
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.119-126
    • /
    • 2009
  • The noise emitted during train operation is generated with various reasons. It is known that the major noise generation is classified according to the ranges of train speed; that is, engine noise at lower speed range, rolling noise at medium speed range, and air-borne noise at higher speed range. These noises are transmitted in combined form with the noises generated from track components and under-carriage, etc. The rolling noise as a major noise at medium speed range is caused by the vibration occurred at wheel/rail interface. The vibration occurred at wheel/rail interface is transmitted to wheel and rail, and this vibration is emitted from wheel and rail as a noise. In this paper, a soundproof box which can simply measure the noise emitted from rail and analyze the characteristics of the measured noise is studied.

  • PDF

Study on the Rolling Noise Model Using an Analysis of Wheel and Rail Vibration Characteristics (철도 차륜 및 레일 진동 특성 해석을 통한 전동 소음 모델 연구)

  • Jang, Seungho;Ryue, Jungsoo
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • Rolling noise is an important source of noise from railways; it is caused by wheel and rail vibrations induced by acoustic roughness at the wheel/rail contact. To reduce rolling noise, it is necessary to have a reliable prediction model that can be used to investigate the effects of various parameters related to the rolling noise. This paper deals with modeling rolling noise from wheel and rail vibrations. In this study, the track is modeled as a discretely supported beam by regarding concrete slab tracks, and the wheel vibration is simulated by using the finite element method. The vertical and lateral wheel/rail contact forces are modeled using the linearized Hertzian contact theory, and then the vibration responses of the wheel and rail are calculated to predict the radiated noise. To validate the proposed model, a field measurement was carried out for a test vehicle. It was found that the predicted result agrees well with the measured one, showing similar behavior in the frequency range between 200 and 4000 Hz where the rolling noise is prominent.

A Study on Relationship between Curving Noise and Wheel Wear in Seoul Subway System (지하철 곡선부소음과 차륜 마모와의 관계에 관한 연구)

  • You, Won-Hee;Hur, Hyun-Moo;Koh, Hyo-In;Park, Joon-Hyuk;Choi, Yong-Woon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.85-93
    • /
    • 2009
  • There are many curves in Seoul subway system. Therefore, the noise from subway system in curved line gives displeasure to passenger. The subway noise in curved line is affected not only by rail condition but also wheel condition and dynamic characteristics. The railway curving noise can be divided into 2 categories. The first is the noise due to stick-slip between wheel tread and rail head, and the second is one by wheel flange contact on rail side. Because of these phenomena - stick-slip and wheel flange contact - wheels are worn seriously. In this study the curving noise was reviewed by using eigen-mode of wheel and waterfall plot which shows noise level in time-frequency domain. And also those were reviewed in viewpoint of stick-slip noise and wheel flange contact noise. Finally, the relationship between curving noise and wheel wear was studied.