• Title/Summary/Keyword: Wet-bulb temperature

Search Result 86, Processing Time 0.024 seconds

Observational Study to Investigate Thermal Environment and Effect of Clean- Road System over a Broad Way of Daegu in Summer (대구의 여름철 도로 열 환경과 클린로드 시스템의 효과 조사를 위한 관측연구)

  • Kim, Sung-Rak;Jung, Eung-Ho;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.24 no.9
    • /
    • pp.1171-1180
    • /
    • 2015
  • To investigate thermal environment and effect of clean-road system over a broad way, we conducted the filed meteorological observation during 12~13 August 2014. The clean-road system was employed over a part of the broad way of Dalgubul(Dalgubul-Daero) by Daegu Metropolitan city in 2011. The clean-road system in general is operated two times(4 am, 2 pm) during summertime. In case of scorching alert, the system is operated 3 times a day(4 am, 2 pm and 4 pm). To evaluate the present thermal condition and the improvement effects due to the system, we analyzed the time variation of discomfort index and WBGT(wet-bulb and globe temperature). WBGT was more than 25 during 8 a.m. ~ 9 p.m. And discomfort index was more than 75 during 8 a.m. ~ 11 p.m. The thermal improvement effect of the clean-road system was restrictive during daytime.

Analysis of Heat and Mass Transfer in an Evaporative Cooler with Fully Wetted Channel (채널이 수막으로 완전히 덮여 있는 증발식 냉각기에서의 열 및 물질전달 해석)

  • Song, Chan-Ho;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1766-1775
    • /
    • 2001
  • A theoretical analysis on the heat and mass transfer in an evaporative cooler is presented in this work. The evaporative cooler is modeled as a channel filled with porous media the interstitial surface of which is covered by thin water film. Assuming that the Lewis number is unity and the water vapor saturation curve is linear, exact solutions to the energy and vapor concentration equations are obtained. Based on the exact solutions, the characteristics of the heat and mass transfer in the evaporative cooler are investigated. The comparison of the cooling performance between the evaporative cooler and the usual sensible heat exchanger is also carried out. Obviously, the evaporative heat exchanger shows better cooling performance than the sensible heat exchanger. This is due to the latent heat of water vaporization, which results in apparent increases both in the interstitial heat transfer coefficient and the specific heat of the air stream in the evaporative cooler.

Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change

  • Kim, Donghyun;Lee, Junbeom
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Background: As the impact of climate change intensifies, exposure to heat stress will grow, leading to a loss of work capacity for vulnerable occupations and affecting individual labor decisions. This study estimates the future work capacity under the Representative Concentration Pathways 8.5 scenario and discusses its regional impacts on the occupational structure in the Republic of Korea. Methods: The data utilized for this study constitute the local wet bulb globe temperature from the Korea Meteorological Administration and information from the Korean Working Condition Survey from the Occupational Safety and Health Research Institute of Korea. Using these data, we classify the occupations vulnerable to heat stress and estimate future changes in work capacity at the local scale, considering the occupational structure. We then identify the spatial cluster of diminishing work capacity using exploratory spatial data analysis. Results: Our findings indicate that 52 occupations are at risk of heat stress, including machine operators and elementary laborers working in the construction, welding, metal, and mining industries. Moreover, spatial clusters with diminished work capacity appear in southwest Korea. Conclusion: Although previous studies investigated the work capacity associated with heat stress in terms of climatic impact, this study quantifies the local impacts due to the global risk of climate change. The results suggest the need for mainstreaming an adaptation policy related to work capacity in regional development strategies.

Numerical study for performance analysis and design of a counterflow type cooling tower (대향류형 냉각탑에 대한 설계 및 성능해석을 위한 수치해석적 연구)

  • 이상윤;이정희;최영기;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.535-549
    • /
    • 1998
  • A numerical study for performance analysis of a counterflow type forced draft tower and natural draft cooling tower has been performed based on the method using the finite volume method with non-orthogonal body fitted and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy balance, moisture fraction balance, water enthalpy balance, and water mass balance equations are solved with Navier-Stoke’s equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study, The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also peformed.

  • PDF

Numerical Study for the Performance Analysis and Design of a Crossflow- Type Forced Draft Cooling Tower

  • Choi, Young-Ki;Kim, Byung-Jo;Lee, Sang-Yun;Lee, Jung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2000
  • A numerical study for performance analysis of a crossflow-type forced draft cooling tower has been performed based on the finite volume method with non-orthogonal body fitted, and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy, moisture fraction, water enthalpy, and water mass balance equations are solved with Navier-Stoke's equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study. The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also performed.

  • PDF

Thermal Performance of an Enthalpy Exchanger Made of Paper at Different Outdoor Temperatures and Humidities (외기 온·습도 변화에 따른 종이재질 전열교환 엘리먼트 성능에 관한 연구)

  • Kim, Nae-Hyun;Lee, Eul-Jong;Song, Kil-Sup;Oh, Wang-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.697-702
    • /
    • 2010
  • An enthalpy exchanger in which heat and moisture transfer occur between the indoor and outdoor air operates at various outdoor conditions. In this study, the effect of the outdoor-air temperature and humidity on the performance of an enthalpy exchanger was experimentally investigated. An apparatus was specially-made to accurately measure the incoming and outgoing dry- and wet-bulb air temperatures as well as the flow rates. Tests were conducted in constant-temperature and constant-humidity chambers at different outdoor temperatures and humidities. It is shown that the effectiveness of latent-heat exchange increases as the relative humidity increases; further, this effect exhibited minimal dependence on the absolute humidity. However, the effectiveness of sensible-heat exchange is independent of both temperature and humidity

Determination and Predictability of Precipitation-type in Winter from a Ground-based Microwave Radiometric Profiler Radiometer (라디오미터를 이용한 겨울철 강수형태 결정 및 예측가능성 고찰)

  • Won, Hye Young;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.229-238
    • /
    • 2010
  • The 1,000~500 hPa thickness and the $0^{\circ}C$ isotherm at 850 hPa have been used as the traditional predictors for wintertime precipitation-type forecasts. New approaches are taking on added significance as preexistence method of determination for wintertime precipitation-type exhibits more or less prevalent false alarms. Moreover thicknesses and thermodynamic profiles from ordinary upper-air observation were not adequate to monitor the atmospheric structure. In this regard, Microwave radiometric profiler microwave radiometer is useful in wintertime precipitation-type forecasts because radiometric measurements provide soundings at high temporal resolution. In this study, the determination and the predictability of wintertime precipitation-type were examined by using the calculated thicknesses, temperature of 850 hPa (T850) from a microwave radiometer, and surface observation at National Center for Intensive Observation of severe weather (NCIO) located at Haenam, Korea. The critical values for traditional predictors (thickness of 1000~500 hPa and T850) were evaluated and adjusted to Haenam region because snow rarely occurred with a 1000-500 hPa thickness > 5,300 m and T850 > $-10^{\circ}C$. Three thicknesses (e.g., 1,000~850, 1000~700, and 850~700 hPa thickness), T850, surface air temperature, and wet-bulb temperature were also evaluated as the additional predictors. A simple nomogram and a flow chart were finally designed to determine the wintertime precipitation-type using the microwave radiometer. The skill scores for the predictability of precipitation-type determination are considerably improved and the predictors showed the temporal variations in 12 hours before precipitation. We can monitor the hit and run snowfall in winter successful by realtime watch of the predictors, especially in commutes of big cities.

Climate Warming and Occupational Heat and Hot Environment Standards in Thailand

  • Phanprasit, Wantanee;Rittaprom, Kannikar;Dokkem, Sumitra;Meeyai, Aronrag C.;Boonyayothin, Vorakamol;Jaakkola, Jouni J.K.;Nayha, Simo
    • Safety and Health at Work
    • /
    • v.12 no.1
    • /
    • pp.119-126
    • /
    • 2021
  • Background: During the period 2001 to 2016, the maximum temperatures in Thailand rose from 38-41℃ to 42-44℃. The current occupational heat exposure standard of Thailand issued in 2006 is based on wet bulb globe temperature (WBGT) defined for three workload levels without a work-rest regimen. This study examined whether the present standard still protects most workers. Methods: The sample comprised 168 heat acclimatized workers (90 in construction sites, 78 in foundries). Heart rate and auditory canal temperature were recorded continuously for 2 hours. Workplace WBGT, relative humidity, and wind velocity were monitored, and the participants' workloads were estimated. Heat-related symptoms and signs were collected by a questionnaire. Results: Only 55% of the participants worked in workplaces complying with the heat standard. Of them, 79% had auditory canal temperature ≤ 38.5℃, compared with only 58% in noncompliant workplaces. 18% and 43% of the workers in compliant and noncompliant workplaces, respectively, had symptoms from heat stress, the trend being similar across all workload levels. An increase of one degree (C) in WBGT was associated with a 1.85-fold increase (95% confidence interval: 1.44-2.48) in odds for having symptoms. Conclusion: Compliance with the current occupational heat standard protects 4/5 of the workers, whereas noncompliance reduces this proportion to one half. The reasons for noncompliance include the gaps and ambiguities in the law. The law should specify work/rest schedules; outdoor work should be identified as an occupational heat hazard; and the staff should include occupational personnel to manage heat stress in establishments involving heat exposure.

Status and Awareness of Excessive Heat Exposure among Agricultural Workers (일부 농업인의 고온노출에 대한 실태와 인지도 조사)

  • Lee, Dong-Hyun;Kim, Dong-Seob;Chung, Jin-Wook;Lee, Kwan;Lim, Hyun-Sul
    • Journal of agricultural medicine and community health
    • /
    • v.43 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Objectives: This study was to assess the status and awareness of excessive heat exposure among agricultural workers. Methods: We selected a total of 90 farmers from a villages of Gyeongju-si, during August, 2015. We carried out the temperature measurement for nine times and derived Health Index (HI) and Wet Bulb Globe Temperature (WBGT) index. We compared the HI, WBGT and excessive heat warnings. Status of high temperature exposure, lifestyle, medical history, and awareness about excessive health related exposure illness assessed using survey questionnaires. Results: The matching rates between the WBGT and the HI during excessive heat warning were high, but when it was a non-excessive heat warning, there were days of excessive HI or WBGT. Out of 90 farmers surveyed, 78 cases (86.7%) were in their 60s and older age group. Slightly more than two third (71.1%) farmers were farming in the dawn-morning (71.1%), and the daily working hours were less than 4 hours (54.4 %), but only 23.3% among farmers took regular breaks. Of total, 14.4% farmers experienced excessive heat exposure related illness in order of tiredness, lethargy, dizziness, headaches, and sweating. Overall, the awareness of the danger for excessive heat and the heat wave warnings were high at 70.0% and 74.4%, respectively. Conclusions: Politically, the excessive heat warnings should not be taken into account the simple temperature measurement but, have to consider WBGT and HI standards at the same time. Farmers need to be promoted and educated to prevent the excessive heat related illness by periodically increasing their rest time during farming.

Effect of Housing on Physiological Responses and Energy Expenditure of Sheep in a Semi-arid Region of India

  • Bhatta, Raghavendra;Swain, N.;Verma, D.L.;Singh, N.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1188-1193
    • /
    • 2005
  • An investigation was carried out to study the effect of two housing systems on physiological responses and energy expenditure of sheep in a semi-arid region of India. Two types of housing management were adopted. First was a shed- $6{\times}3\;m^2$ structure with all the four sides of 1.8 m chain link fencing with a central height of 3 m. The roof was covered with asbestos sheets and with mud floorings. Second was an open corral- $6{\times}3\;m^2$ open space with all the four sides covered with 1.8 m chain link fencing. Thirty-four (32 ewes and 2 rams) sheep of native Malpura breed aged about 18 months (body weight 28 kg ewes; 35 kg rams) were grazed together on a 35 ha plot of native range. All the sheep were grazed as a flock from 08.00 to 17.00 h during a yearlong study. The flock was divided into two groups (16 ewes+1 ram) in the evening and housed as per the systems (Shed and Open Corral). Dry and wet temperatures were recorded at 06.00 h and 21.00 h using a wet and dry bulb-thermometer both inside the shed and in the open corral and temperature humidity index (THI) was calculated. There was significant (p<0.05) difference in the THI between shed and open corral in all the seasons, indicating that shed was always warmer compared to open corral. Rectal temperature (RT) of both the groups of sheep was similar during morning as well as evening throughout the seasons. There were significant (p<0.05) differences in the skin temperature (ST) and respiration rate (RR) between the two groups at both the measurements in all the seasons. Highest energy expenditure (EE) was recorded inside the shed at 21.00 h (224 kJ/h) during monsoon and lowest at 6.00 h during winter (119 kJ/h). There was a significant (p<0.05) difference between the EE inside the shed and that in the open corral. It was concluded that housing had significant effects on the physiological responses and EE of sheep. Provision of housing at night was stressful during monsoon (with less rainfall) and summer, whereas it was protecting the sheep from acute cold during winter in a semi-arid region of India.