• Title/Summary/Keyword: Wet film thickness

Search Result 72, Processing Time 0.019 seconds

The Critical Pigment Volume Concentration Concept for Paper Coatings: I. Model Coating Systems Using Plastic Pigments and Latex Binders for Paper Coating Applications

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.1-17
    • /
    • 2002
  • The immobilization and consolidation of the model coatings based on the plastic pigment and latex binder of known particle sizes were theoretically Studied in terms of the dense random packing of binary spheres and varying extent of latex film shrinkage. The porosity of the model coatings was calculated based on three proposed latex shrinkage models: Maximum, Minimum, and Linearly Decreasing Latex Shrinkage. The increasing extent of latex shrinkage was calculated up to the critical pigment volume concentration(CPVC) as a function of plastic pigment volume fractions, and the maximum latex shrinkage was estimated from the CPVC. Also, the number of pores and the average equivalent spherical pore diameters were calculated based on those proposed models. The opacity and gloss of the model coatings on polyester films were measured and their porosity was also determined by a simple coat weight-thickness method. As expected, various coating structure-property-composition relationships, such as opacity, gloss, porosity, etc., were shown to exhibit sharp transitions near the CPVC. The CPVC values determined by the opacity, gloss, and porosity vs. PVC relationships, respectively, agreed very well with each other. Especially, the CPVC's determined by the opacity and porosity vs. PVC curves were identical. The comparison between the theoretically calculated and experimental porosity values showed that the intermediate value between the maximum and minimum latex shrinkage would best fit the experimental porosity data. The effect of plastic pigment particle size on the optical properties and porosity of model coatings was also studied and it was observed that the coating opacity and porosity increased with increasing plastic pigment particle size, but the gloss decreased. The ink gloss of the uncalendered model coatings applied onto commercial sheet offset coated papers was shown to be affected by both the coating gloss and porosity: the higher the coating gloss, the higher the ink gloss, but the higher the coating porosity, the lower the ink gloss. Their printability was also studied in terms of the number of passes-to-fail and the rate of ink setting as a function of both plastic pigment volume fractions and plastic pigment particle sizes. A minimum crack-free temperature(MCR) of latex-bound coatings was proposed to better predict the behaviors of latexes as coating binders. The wet state of model coating dispersions, the surfaces of consolidated model coatings, and their internal structure were examined by both electron and atomic force microscopy, and their micrographs were found to be consistent with our immobilization and consolidation models.

A Study on the Bonding Strength, Reactivity and Thermal Properties of Epoxy Resin Mixed with ESBO (에폭시수지-ESBO 혼용 비율에 따른 목재접착제의 접착력, 반응성 및 열분석에 관한 연구)

  • Choi, Jin Lim;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.36-44
    • /
    • 2007
  • The purpose of this study was to investigate thermal stability, reactivity, and bonding strength of existing epoxy resin mixed with the epoxidized soybean oil (ESBO) in order to use soybean oil economically. In the dry shear test, the marked strengths showed $30.5kgf/cm^2$ at the ratio of ESBO to epoxy resin 9 : 1 and $6.2kgf/cm^2$ at the ratio 8 : 2. The bonding strengths of the others, except mixing ratios 2 : 8 and 1 : 9, exceeded the requirement of Korean plywood standard of $7.0kgf/cm^2$. In the wet shear test, the result was $5.8kgf/cm^2$ at the ratio 9 : 1. There were no thickness swelling and moisture absorption in the water resistance of the film. The value of activation energy, Tg (${\Delta}E$), by DSC analysis showed between $110^{\circ}C$ and $120^{\circ}C$ through all ratios. Epoxy in the epoxy resin fully reacted with the hardener (TETA), but it is difficult to decide that epoxys in the ESBO were reacted directly with the hardener from FT-IR analysis. As the mixing ratio of ESBO increased, the thermal stabilities dropped from TGA analysis. From the comprehensive view on the results of above experiments, it could be confirmed through experiments that the ESBO in the mixed adhesive of epoxy resin/ESBO played a role as an extending agent level of epoxy adhesive, and we were able to know that in order to utilize ESBO as an adhesive, a study should be performed on the condition of hardening, inducible of the hardening reaction.