• 제목/요약/키워드: Wet Surface

검색결과 1,210건 처리시간 0.035초

Comparison of Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions

  • Kim Nae-Hyun;Sin Tae-Ryong;Lee Eung-Ryul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권3호
    • /
    • pp.128-137
    • /
    • 2005
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately $30\%$ lower than the dry surface values. For the pressure drop, the wet surface yielded approximately $30\%$ higher values compared with the dry surface counterpart. Data were compared with existing correlations.

평판휜 열 교환기의 건표면, 습표면 열전달 및 압력손실에 관한 연구 (Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions)

  • 민창근;조진표;오왕규;김내현
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.218-229
    • /
    • 2004
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately 30% lower than the dry surface values. For the pressure drop, the wet surface yielded approximately 30% higher values compared with the dry surface counterpart. Data were compared with existing correlations.

나노초 레이저를 이용한 PMMA의 습식 및 건식어블레이션 비교 연구 (Comparison study of nanosecond laser induced wet and dry ablation of PMMA)

  • 이호
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.243-250
    • /
    • 2019
  • The nanosecond laser assisted ablation have been investigated. The biocompatable polymer PMMA was employed as the target material and the two distinctive surface conditions were test. The first surface condition is a dry surface for which the target surface is exposed to air and the second surface condition is the wet surface for which the target surface is covered with dehydrated water. The ablation volume, the laser induced acoustic wave, the laser induced plasma were investigated for both wet and dry condition. The nanosecond laser pulse ablatied more on the wet surface compared to the dry surface. The enhanced ablation of wet surface is attributed to the confined acoustic wave and the laser-induced plasma in the liquid layer.

PF열교환기의 습표면 성능시험 (Wet Surface Performance Test of PF Heat Exchanger)

  • 조진표;김내현;최국광
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.314-320
    • /
    • 2000
  • In this study, the wet surface heat transfer coefficients and friction factors of PF heat exchangers are presented. Two sample with different fin pitch(1.25mm, 1.5mm) were tested. Tests were conducted in a open loop wind tunnel. The wet surface heat transfer coefficient was reduced following the procedure given in ARI 410-81. Results showed that the heat transfer coefficients of the heat exchanger with 1.5mm fin pitch were approximately the same as those with 1.25mm fin pitch, except at low reynolds number(Re<100), where the heat transfer coefficients of 1.5mm fin pitch were slighly higher than those with 1.25mm fin pitch. The friction factors of the 1.25mm fin pitch, however was 120 % to 160 % higher than those of the 1.5mm fin pitch. The wet surface heat transfer coefficients were lower than those of the dry surface. The wet surface friction factors, however, were higher than those of the dry surface.

  • PDF

INDUSTRIAL STATUS OF DRY PLATING AS AN ALTERNATIVE TO WET PLATING PROCESS IN KOREAN SURFACE FINISHING INDUSTRY

  • Kwon, Sik-Chol;Baek, Woon-Sung;Lee, Gun-Hwan;Rha, Jong-Joo
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.253-256
    • /
    • 1999
  • Wet plating has been initiated and developed as a major surface finishing technology as of the long customized and highly productive process until now. As the external compression by virtue of the environmental preservation becomes stricter, there has been new move to adapt dry plating line instead of conventional wet plating one in domestic surface finishing industry. Dry plating, so-called, plasma surface technology has been developed in semiconducting industry and becomes a key technology to be useful as an alternative to wet plating in surface finishing industry. The historical progress of domestic surface finishing industry was outlined with the background on the adaptation of three dry plating processes-plasma spraying, plasma nitriding and ion plating. The present status of domestic industrial activity was covered on major alternative to wet plating.

  • PDF

구조함정 Wet Bell Diving System 운용성능 개선에 관한 연구 (A Study on the Improvement of Operation Performance of Wet Bell Diving System in the Salvage Ship)

  • 최우석;장호성
    • 한국산학기술학회논문지
    • /
    • 제21권7호
    • /
    • pp.176-183
    • /
    • 2020
  • 구조함은 수색 및 구조작업을 위하여 크게 세 가지 형태의 잠수체계(Diver Stage Diving, Wet Bell Diving 및 Scuba Diving)를 보유하고 있다. 어떠한 잠수체계를 활용하더라도 잠수요원이 잠수작업 완료 후 상승 시에는 잠수병 예방을 위하여 잠수작업수심 및 잠수 총 시간에 해당하는 감압표에 따라 감압절차를 준수하여야 한다. 감압절차는 크게 수중감압방법과 수중 및 함상감압을 병행하여 수행하는 방법으로 나뉘게 된다. 특히 수중 및 함상감압을 함께 수행하는 방법의 경우 U.S Navy Diving Manual에 따라 수중감압에서 함상감압으로 넘어가는 단계인 Surface Interval이 5분을 초과하지 않아야 한다. 하지만 실선 테스트결과 Wet Bell Diving에서 Surface Interval이 5분을 초과하는 문제점이 발생하였다. 이에 본 논문에서는 모든 가능한 원인을 식별하여 원인분석을 실시하고, 이를 바탕으로 개선된 Wet Bell Diving의 측정결과를 나타내었다. 그 결과 개선된 잠수체계의 실선 테스트에서 Surface Interval이 5분 이내 만족함을 확인하였다. 본 논문의 연구결과는 향후 잠수체계의 운용 및 개선에 유용한 자료로 활용될 것으로 판단된다.

물결형 슬릿핀이 장착된 핀-관 열교환기의 습표면 성능 실험 (Wet surface performance test of fin-tube heat exchangers with slit-wavy fin)

  • 김내현;김정식;조진표;윤재호;백종현;이순구;남승백;권형진
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.153-162
    • /
    • 1997
  • In this study, the wet surface heat transfer coefficients and friction factors of the heat exchanger with slit-wavy fin were measured. Four sample cores of two or three row with fins of 12 fpi or 16 fpi were tested. Tests were conducted in a closed loop wind tunnel, where the heat exchanger was mounted at 45 degree inclination angle. The wet surface heat transfer coefficient was reduced following the procedure given in ARI 420-81. During the course, new definitions of the $\varepsilon$-NTU applicable to enthalpy driving system were introduced. The wet surface heat transfer coefficients were approximately equal to the dry surface values. However, the friction factors were approximately 120% to 170% higher than those of the dry surface. Both the heat transfer coefficient and the friction factor of the wet surface increased as the relative humidity increased, fin pitch decreased, and the number of row decreased, although the difference was not large.

  • PDF

Reduction of the Wet Surface Heat Transfer Coefficients from Experimental Data

  • Kim, Nae-Hyun;Sim, Yong-Sub
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권1호
    • /
    • pp.37-49
    • /
    • 2004
  • Four different data reduction methods for the heat transfer coefficients from experimental data under dehumidifying conditions are compared. The four methods consist of two heat and mass transfer models and two fin efficiency models. Data are obtained from two heat exchanger samples having plain fins or wave fins. Comparison of the reduced heat transfer coefficients revealed that the single potential heat and mass transfer model yielded the humidity-independent heat transfer coefficients. Two fin efficiency models-enthalpy model and humidity model-yielded approximately the same fin efficiencies, and accordingly approximately the same heat transfer coefficients. The heat transfer coefficients under wet conditions were approximately the same as those of the dry conditions for the plain fin configuration. For the wave fin configuration, however, wet surface heat transfer coefficients were approximately 12% higher. The pressure drops of the wet surface were 10% to 45% larger than those of the dry surface.

The Effect of Three-Dimensional Morphology with Wet Chemical Etching in Solar Cells

  • Kim, Hyunyub;Park, Jangho;Kim, Hyunki;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.667-667
    • /
    • 2013
  • Optimizing morphology of the front surface with three dimensional structures (3D) in solar cell is essential element for not only effectivelight harvesting but also carrier collection and separation without the cost burden in process. We designed a three-dimensionally ordered front surface with wet chemical etching. Wet chemical etching is a proper way to have three dimensional structures. The method efficiently transmits the incident light at the front surface to a Si absorber and has competitive price in manufacturing when comparing with reactive ion etching (RIE) to have three dimensional structures. This indicates that optimized front surface with three dimensional structures by wet chemical etching will bring effective light management in solar cells.

  • PDF

전사 방법에 따른 그래핀의 표면 에너지 변화 (Surface Energy of Graphene Transferred by Wet and Dry Transfer Methods)

  • 윤민아;김찬;원세정;정현준;김재현;김광섭
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.9-15
    • /
    • 2019
  • Graphene is a fascinating material for fabricating flexible and transparent devices owing to its thickness and mechanical properties. To utilize graphene as a core material for devices, the transfer process of graphene is an inevitable step. The transfer process can be classified into wet and dry methods depending on the surrounding environment. The adhesion between graphene and a target substrate determines the success or failure of the transfer process. As the surface energy of graphene is an important parameter that provides adhesion, it is useful to estimate the surface energy to understand the mechanisms of the transfer process. However, the exact surface energy of graphene is still disputed because the wetting transparency of graphene depends on the polarity of the liquid and target substrate. Previously reported results use graphene transferred by the wet method. However, there are few reports on the surface energy of graphene transferred by the dry method. In this study, the surface energy of graphene transferred by the wet and dry methods is estimated. Wetting transparency occurs for certain combinations of liquids and substrates. For graphene on a polar substrate, the surface energy decreases by 25 and 35% for the wet and dry transfer methods, respectively. However, the surface energy of graphene on dispersive substrates decreases by ~10% regardless of the transfer method. In conclusion, the surface energy of graphene is $36{\sim}38mJ/m^2$, and differs depending on the transfer method and polarity of the substrate.