• Title/Summary/Keyword: Wet/Dry Oxide

Search Result 61, Processing Time 0.026 seconds

Effect of propyl gallate on the properties of regenerated cellulose fiber spun from NMMO dope system (Propyl gallate가 NMMO계에서 제조된 셀룰로오스 섬유의 물성에 미치는 영향)

  • Lee, Soo;Lee, Sang-Won;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • Regenerated cellulose fibers were prepared from three pulps containing different degree of polymerization(DP) and $\alpha$-cellulose contents by dry-jet wet spinning technique with cellulose dope in N-methylmorpholin N-oxide (NMMO). The effect of antioxidant, n-propyl gallate (PG) on the properties of different regenerated celluloses was studied using X-ray diffraction, copper number calculation, and viscometry. The degradaqtion of regenerated cellulose from pulp containing higher DP and lower $\alpha$-cellulose content was occurred more seriously. The tensile strength and initial modulus of regenerated cellulose fiber obtained from NMMO dope with PG were higher than those of fiber obtained from NMMO dope without PG. All fibers showed the round shape cross section and typical cellulose II crystalline structure.

A Study on the Oxidation Reaction of Iron (II) Sulfate by Dry and Wet Process (황산제1철의 乾濕式에 의한 酸化反應에 對한 硏究)

  • Soo Duk Suhl;Joo Kyung Sung;Yong Kil Whang
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.121-124
    • /
    • 1977
  • A study on the formation of black iron oxide was carried in differents of Fe(III), Fe(II) ion in the aqueous solution that iron(II) sulfate was calcined under various temperature and leached in water. The results obtained was follows; (1) It was found that the sample calcined in an electric muffle furnace maintained at $500^{\circ}C$ for 1 hour and leached in water was equivalent mole (Fe(III) /Fe(II) = 1) in 20% aqueous solution. (2) When the above mentioned solution was hydrolyzed at pH range of 7 to 8 for 2 hours at $100^{\circ}C$, 93% and over of iron was recovered in the form of ${\alpha}-Fe_3O_4$ with a black colour.

  • PDF

Reactivity Evaluation on Copper Etching Using Organic Chelators (유기 킬레이터들을 이용한 구리 식각에 대한 반응성 평가)

  • Kim, Chul Hee;Lim, Eun Taek;Park, Chan Ho;Park, Sung Yong;Lee, Ji Soo;Chung, Chee Won;Kim, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.569-575
    • /
    • 2021
  • The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.

Improvement in Light Extraction Efficiency of 380 nm UV-LED Using Nano-patterned n-type Gan Substrate (나노 구조의 패턴을 갖는 n-type GaN 기판을 이용한 380 nm UV-LED의 광 추출 효율 개선)

  • Baek, Kwang-Sun;Jo, Min-Sung;Lee, Young-Gon;Sadasivam, Karthikeyan Giri;Song, Young-Ho;Kim, Seung-Hwan;Kim, Jae-Kwan;Jeon, Seong-Ran;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.273-276
    • /
    • 2011
  • Ultraviolet (UV) light emitting diodes (LEDs) were grown on a patterned n-type GaN substrate (PNS) with 200 nm silicon-di-oxide (SiO2) nano pattern diameter to improve the light output efficiency of the diodes. Wet etched self assembled indium tin oxide (ITO) nano clusters serve as a dry etching mask for converting the SiO2 layer grown on the n-GaN template into SiO2 nano patterns by inductively coupled plasma etching. PNS is obtained by n-GaN regrowth on the SiO2 nano patterns and UV-LEDs were fabricated using PNS as a template. Two UV-LEDs, a reference LED without PNS and a 200 nm PNS UV-LEDs were fabricated. Scanning Electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Photoluminescence (PL) and Light output intensity- Input current- Voltage (L-I-V) characteristics were used to evaluate the ITO-$SiO_2$ nanopattern surface morphology, threading dislocation propagation, PNS crystalline property, PNS optical property and UVLED device performance respectively. The light out put intensity was enhanced by 1.6times@100mA for the LED grown on PNS compared to the reference LED with out PNS.

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending(I) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(I))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Regenerated composite fibers are prepared from solution(styela clava tunics /poly vinyl alchol) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt/wt) as a solvent by dry-wet spinning. The chemical cellulose (94%, ${\alpha}$-cellulose content) used for this study is extracted from styela clava tunics (SCT, Midduck), which are treated in chemical process and mechanical grinding. The structure and physical properties of regenerated composite fibers were investigated through IR-spetra, DSC, TGA and SEM. The optimal blend ratio of SCT/PVA for spinning solution was 70/30 and the total weight was 4% concentrations in NMMO/water solvent system. The fiber density, moisture contents and the degree of swelling were $1.5(g/cm^3)$ 10.2(%) and 365(%), respectively. The crystallinity index of composite fibers are decreased as the PVA contents increased. Thermal decomposition of composite fibers took place in two stages at around $250^{\circ}C$ and $550^{\circ}C$. The best thermal stability was obtained with 30% PVA contents.

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending( II) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(II))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2008
  • Regenerated composite fibers were prepared from solution of styela clava tunics(SC) and poly vinyl alchol(PVA) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt%/wt%) as a solvent by dry jet-wet spinning. Structure and physical properties of regenerated composite fibers were investigated through birefrngence, x-ray diffratograms, tenacity, fibrillation and SEM. Optimal blend ratio of SC/PVA for mechanical properties of composite fibers was 70/30 and total weight was 4wt% concentrations in NMMO/$H_2O$ solvent system. Crystallinity index of composite fibers were decreased as the PVA contents increased. Fibrillation of $10{\sim}20wt%$ PVA blended fibers were occurred less than pure SC fiber. Shape of composite fibers were a circle cross section within 10wt% PVA content. But the cross section of fibers were changed as crushed flat with the PVA contents increased.

ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient

  • Herrera, Roberto Benjamin Cortes;Kryshtab, Tetyana;Andraca Adame, Jose Alberto;Kryvko, Andriy
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • ZnO, ZnO: Cu, Ga, and ZnO: Cu, Ga, Ag thin films were obtained by oxidization of ZnS and ZnS: Cu, Ga films deposited onto glass substrates by electron-beam evaporation from ZnS and ZnS: Cu, Ga targets and from ZnS: Cu, Ga film additionally doped with Ag by the closed space sublimation technique at atmospheric pressure. The film thickness was about $1{\mu}m$. The oxidation was carried out at $600-650^{\circ}C$ in air or in an atmosphere containing water vapor. Structural characteristics were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). Photoluminescence (PL) spectra of the films were measured at 30-300 K using the excitation wavelengths of 337, 405 and 457.9 nm. As-deposited ZnS and ZnS: Cu, Ga films had cubic structure. The oxidation of the doped films in air or in water vapors led to complete ZnO phase transition. XRD and AFM studies showed that the grain sizes of oxidized films at wet annealing were larger than of the films after dry annealing. As-deposited doped and undoped ZnS thin films did not emit PL. Shape and intensity of the PL emission depended on doping and oxidation conditions. Emission intensity of the films annealed in water vapors was higher than of the films annealed in the air. PL of ZnO: Cu, Ga films excited by 337 nm wavelength exhibits UV (380 nm) and green emission (500 nm). PL spectra at 300 and 30 K excited by 457.9 and 405 nm wavelengths consisted of two bands - the green band at 500 nm and the red band at 650 nm. Location and intensities ratio depended on the preparation conditions.

Thermal Oxidation of Porous Silicon (다공질 실리콘 (Porous Silicon) 의 열산화)

  • Yang, Cheon-Soon;Park, Jeong-Yong;Lee, Jong-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.106-112
    • /
    • 1990
  • The progress of oxidation of a porous silicon layer(PSL) was studied by examining the temperature dependence of the oxidation and the infrared absorption spectra. Thick OPSL(oxidized porous silicon layer). which has the same properties as thermal $SiO_{2}$ of bulk silicon, is formed in a short time by two steps wet oxidation of PSL at $700^{\circ}C$, 1 hr and $1100^{\circ}C$, 1 hr. Etching rate, breakdown strength of the OPSL are strongly dependent on the oxidation temperature, oxidation atmosphere. And its breakdown field was ${1\MV/cm^-2}$ MV/cm The oxide film stress was determined through curvature measurement using a dial gauge. During oxidation at temperature above $1000^{\circ}C$ in dry $O_{2}$, stress on the order of ${10^9}\dyne/{cm^2}{-10^10}\dyne/{cm^2}$ are generated in the OPSL.

  • PDF

Effect of Water Addition on Activity of Gold Catalysts Supported on Metal Oxide at Low Temperature CO Oxidation (일산화탄소 저온 산화에서 금속산화물에 담지된 금촉매의 활성에 미치는 수분첨가의 영향)

  • Ahn, Ho-Geun;Kim, Ki-Joong;Chung, Min-Chul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.720-725
    • /
    • 2011
  • Gold catalysts supported on metal-oxides were prepared by co-precipitation using the various metal nitrates and chloroauric acid as precursors, and effect of water addition on the catalytic activity in CO oxidation was investigated. Among the various supported gold catalysts, Au/$Co_{3}O_{4}$ and Au/ZnO catalysts showed the excellent activity for CO oxidation. Water in the reactant gas had a negative effect on the oxidation activity over Au/$Co_{3}O_{4}$ catalysts and a positive effect on that over Au/ZnO, which means the activity depends strongly on the nature of support. It was also confirmed that no significant change in the particle size of gold was observed after reaction both in dry and wet conditions. This fact suggested that the deactivated catalyst due to a carbonate species could be regenerated by water addition in the reactant gas.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.