• Title/Summary/Keyword: Western Pacific Ocean

Search Result 184, Processing Time 0.018 seconds

Feeding Characteristics of the Japanese Anchovy, Engraulis japonicus According to the Distribution of Zooplankton in the Coastal Waters of Southern Korea (한국 남해 연안 해역에서 출현하는 동물플랑크톤의 분포에 따른 멸치 섭이 특성)

  • Kim, Min Jung;Youn, Seok Hyun;Kim, Jin-Yeong;Oh, Chul-Woong
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.275-287
    • /
    • 2013
  • The Japanese anchovy Engraulis japonicus is a widespread species in the western North Pacific and major fishery resource. To understand the spatio-temporal variation of anchovy prey items in the coastal waters of southern Korea, the stomach contents of anchovy and the structure of the zooplankton community were analysed at three sites (Jindo, Yeosu and Tong-yeong) from July 2011 to February 2012. The main prey items in Yeosu and Jindo were cyprid stage of barnacle (>35%) and copepod Calanus sinicus (>22%) in July, respectively, while, predominant ones in Tongyeong were small copepods, Paracalanus parvus s.l. (41%) and Corycaeus affinis (22%). During this period, the dominant zooplankton were cladoceran Evadne tergestina (39%) in Yeosu, small copepod, P. parvus s.l. (28%) in Jindo and cladoceran E. tergestina (14%) in Tongyeong. The dominant prey items were barnacle larvae and copepods in summer, phytoplankton and Pseudodiaptomus marinus in autumn and P. parvus s.l. and cold water copepod, Centropages abdominalis in winter. Anchovy prefer the prey item C. sinicus (3%) over E. tergestina (39%), which was a dominant species in the catching site in summer. P. marinus (0.5%) and C. abdominalis (0.9%) were preferred over P. parvus s.l. (30%, 21%) in autumn and winter, respectively. Prey items varied with area and season in the coastal waters of southern Korea. These results suggest that the prey selectivity of anchovy showed high flexibility and adaptability in the study waters.

Stock Identification of Todarodes pacificus in Northwest Pacific (북서태평양에 서식하는 살오징어(Todarodes pacificus) 계군 분석에 대한 고찰)

  • Kim, Jeong-Yun;Moon, Chang-Ho;Yoon, Moon-Geun;Kang, Chang-Keun;Kim, Kyung-Ryul;Na, Taehee;Choy, Eun Jung;Lee, Chung Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.292-302
    • /
    • 2012
  • This paper reviews comparison analysis of current and latest application for stock identification methods of Todarodes pacificus, and the pros and cons of each method and consideration of how to compensate for each other. Todarodes pacificus which migrates wide areas in western North Pacific is important fishery resource ecologically and commercially. Todarodes pacificus is also considered as 'biological indicator' of ocean environmental changes. And changes in its short and long term catch and distribution area occur along with environmental changes. For example, while the catch of pollack, a cold water fish, has dramatically decreased until today after the climate regime shift in 1987/1988, the catch of Todarodes pacificus has been dramatically increased. Regarding the decrease in pollack catch, overfishing and climate changes were considered as the main causes, but there has been no definite reason until today. One of the reasons why there is no definite answer is related with no proper analysis about ecological and environmental aspects based on stock identification. Subpopulation is a group sharing the same gene pool through sexual reproduction process within limited boundaries having similar ecological characteristics. Each individual with same stock might be affected by different environment in temporal and spatial during the process of spawning, recruitment and then reproduction. Thereby, accurate stock analysis about the species can play an efficient alternative to comply with effective resource management and rapid changes. Four main stock analysis were applied to Todarodes pacificus: Morphologic Method, Ecological Method, Tagging Method, Genetic Method. Ecological method is studies for analysis of differences in spawning grounds by analysing the individual ecological change, distribution, migration status, parasitic state of parasite, kinds of parasite and parasite infection rate etc. Currently the method has been studying lively can identify the group in the similar environment. However It is difficult to know to identify the same genetic group in each other. Tagging Method is direct method. It can analyse cohort's migration, distribution and location of spawning, but it is very difficult to recapture tagged squids and hard to tag juveniles. Genetic method, which is for useful fishery resource stock analysis has provided the basic information regarding resource management study. Genetic method for stock analysis is determined according to markers' sensitivity and need to select high multiform of genetic markers. For stock identification, isozyme multiform has been used for genetic markers. Recently there is increase in use of makers with high range variability among DNA sequencing like mitochondria, microsatellite. Even the current morphologic method, tagging method and ecological method played important rolls through finding Todarodes pacificus' life cycle, migration route and changes in spawning grounds, it is still difficult to analyze the stock of Todarodes pacificus as those are distributed in difference seas. Lately, by taking advantages of each stock analysis method, more complicated method is being applied. If based on such analysis and genetic method for improvement are played, there will be much advance in management system for the resource fluctuation of Todarodes pacificus.

Distributions of Dissolved Pb and Cd in the Surface Water of East Sea, Korea (동해 표층수중 용존 Pb, Cd의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2015
  • The distributions of Pb and Cd concentrations in the surface seawater of the East Sea were investigated during the R/V Lavrentyev cruise (July 2009) in which four transects from Russia shore to South were conducted to collect 26 surface water samples. The total dissolved concentrations of Pb and Cd were measured using ICP-MS (Perkin Elmer, DRC-e). In the coastal area, their concentrations of Russia shore (Pb, 0.08; Cd, 0.10 nM) were comparable for Cd but on the other hand, 6 times lower for Pb than Korea shore (Pb, 0.49; Cd, 0.11 nM). In the subregion, their concentrations of Warm region (Pb, 0.22; Cd, 0.01 nM) were about 1.7 times higher for Pb but 0.4 lower for Cd than Cold region (Pb, 0.13; Cd, 0.14 nM). The distributions of Pb and Cd concentrations were divided by lowest level at $10^{\circ}C$ of water temperature. Below $10^{\circ}C$, Pb and Cd concentrations increased when surface water temperatures decreased. Above $10^{\circ}C$, their concentrations increased with temperature, which showed highest concentrations in the Ulleung basin, directly influenced by flux from East Korean Warm Current and neighboring countrys (Korea and Japan). Specially, in the case of Pb, the concentrations decrease remarkablely with temperatures decrease from D10 directly influenced by flux from East Korean Warm Current, which shows highest Pb level. By comparing with other sea areas (Western Mediterranean, East Pacific), Pb concentrations in the East Sea were a little higher. The influence of East Korean Warm Current and neighboring countrys (Korea and Japan) may be relatively important. Therefore, the distribution of Cd may primarily be influenced by mixing of different water masses while the distribution of Pb may mainly be influenced by flux from East Korean Warm Current and atmospheric inputs. River inputs and interaction with particulate materials may also some roles for the distribution of these elements.

Changes in Meteorological Variables by SO2 Emissions over East Asia using a Linux-based U.K. Earth System Model (리눅스 기반 U.K. 지구시스템모형을 이용한 동아시아 SO2 배출에 따른 기상장 변화)

  • Youn, Daeok;Song, Hyunggyu;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.60-76
    • /
    • 2022
  • This study presents a software full setup and the following test execution times in a Linux cluster for the United Kingdom Earth System Model (UKESM) and then compares the model results from control and experimental simulations of the UKESM relative to various observations. Despite its low resolution, the latest version of the UKESM can simulate tropospheric chemistry-aerosol processes and the stratospheric ozone chemistry using the United Kingdom Chemistry and Aerosol (UKCA) module. The UKESM with UKCA (UKESM-UKCA) can treat atmospheric chemistryaerosol-cloud-radiation interactions throughout the whole atmosphere. In addition to the control UKESM run with the default CMIP5 SO2 emission dataset, an experimental run was conducted to evaluate the aerosol effects on meteorology by changing atmospheric SO2 loading with the newest REAS data over East Asia. The simulation period of the two model runs was 28 years, from January 1, 1982 to December 31, 2009. Spatial distributions of monthly mean aerosol optical depth, 2-m temperature, and precipitation intensity from model simulations and observations over East Asia were compared. The spatial patterns of surface temperature and precipitation from the two model simulations were generally in reasonable agreement with the observations. The simulated ozone concentration and total column ozone also agreed reasonably with the ERA5 reanalyzed one. Comparisons of spatial patterns and linear trends led to the conclusion that the model simulation with the newest SO2 emission dataset over East Asia showed better temporal changes in temperature and precipitation over the western Pacific and inland China. Our results are in line with previous finding that SO2 emissions over East Asia are an important factor for the atmospheric environment and climate change. This study confirms that the UKESM can be installed and operated in a Linux cluster-computing environment. Thus, researchers in various fields would have better access to the UKESM, which can handle the carbon cycle and atmospheric environment on Earth with interactions between the atmosphere, ocean, sea ice, and land.