• Title/Summary/Keyword: Western Blot

Search Result 2,802, Processing Time 0.023 seconds

Evaluation of the Radioimmunotherapy Using I-131 labeled Vascular Endothelial Growth Factor Receptor2 Antibody in Melanoma Xenograft Murine Model (흑색종에서의 I-131표지 혈관내피세포성장인자 수용체2항체를 이용한 방사면역치료 평가)

  • Kim, Eun-Mi;Jeong, Hwan-Jeong;Park, Eun-Hye;Cheong, Su-Jin;Lee, Chang-Moon;Jang, Kyu-Yun;Kim, Dong-Wook;Lim, Seok-Tae;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.4
    • /
    • pp.307-313
    • /
    • 2008
  • Purpose: Vascular endothelial growth factor (VEGF) and its receptor, fetal liver kinase 1 (Flk-1), play an important role in vascular permeability and tumor angiogenesis. The aim of this study is to evaluate the therapeutic efficacy of $^{131}I$ labeled anti-Flk-1 monoclonal antibody (DC101) on the growth of melanoma tumor, which is known to be very aggressive in vivo. Materials and Methods: Balb/c nude mice were injected subcutaneously with melanoma cells in the right flank. Tumors were allowed to grow up to $200-250\;mm^3$ in volume. Gamma camera imaging and biodistribution studies were performed to identify an uptake of $^{131}I$-DC101 in various organs. Mice with tumor were randomly divided into five groups (10 mice per group) and injected intravenously; control PBS (group 1), $^{131}I$-DC101 $50\;{\mu}g/mouse$ (group 2), non-labeled DC101 $50\;{\mu}g/mouse$ (group 3), $^{131}I$-DC101 $30\;{\mu}g/mouse$ (group 4) and $15\;{\mu}g/mouse$ (group 5) every 3 or 4 days for 20 days. Tumor volume was measured with caliper twice a week. Results: In gamma camera images, the uptake of $^{131}I$-DC101 into tumor and thyroid was increased with time. Biodistribution results showed that the radioactivity of blood and other major organ was gradually decreased with time whereas tumor uptake was increased up to 48 hr and then decreased. After 4th injection of $^{131}I$-DC101, tumor volume of group 2 and 4 was significantly smaller than that group 1. After 5th injection, the tumor volume of group 5 also significantly reduced. Conclusion: These results indicated that delivery of $^{131}I$ to tumor using FlK-1 antibody, DC101, effectively blocks tumor growth in aggressive melanoma xenograft model.

Activation of NF-${\kappa}B$ in Lung Cancer Cell Lines in Basal and TNF-${\alpha}$ Stimulated States (폐암 세포에서 기저 상태와 TNF-${\alpha}$ 자극 시 NF-${\kappa}B$의 활성화)

  • HwangBo, Bin;Lee, Seung-Hee;Lee, Choon-Taek;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : The NF-${\kappa}B$ transcription factors control various biological processes including the immune response, acute phase reaction and cell cycle regulation. NF-${\kappa}B$ complexes are retained in the cytoplasm in the basal state and various stimuli cause a translocation of the NF-${\kappa}B$ complexes into the nucleus where they bind to the ${\kappa}B$ elements and regulate the transcription of the target genes. Recent reports also suggest that NF-${\kappa}B$ proteins are involved in oncogenesis, tumor growth and metastasis. High expression of NF-${\kappa}B$ expression was reported in many cancer cell lines and tissues. The constitutive activation of NF-${\kappa}B$ was also reported in several cancer cell lines supporting its role in cancer development and survival. The anti-apoptotic action of NF-${\kappa}B$ is important for cancer survival. NF-${\kappa}B$ also controls the expression of several proteins that are important for cellular adhesion (ICAM-1, VCAM-1) suggesting a role in cancer metastasis. In lung cancer, high expression levels of the NF-${\kappa}B$ subunit p50 and c-Rel were reported. In fact, high expression does not mean a high activity, and the activation pattern of NF-${\kappa}B$ in lung cancer has not been reported. Materials and Methods : In this study, the NF-${\kappa}B$ nuclear binding activity in the basal and TNF-${\alpha}$ stimulated states were exmined in various lung cancer cell lines and compared with the normal bronchial epithelial cell line. Twelve lung cancer cell lines including the non-small cell and small cell lung cancer cell lines (A549, NCI-H358, NCI-H441, NCI-H552, NCI-H2009, NCI-H460, NCI-H1229, NCI-H1703, NCI-H157, NCI-H187, NCI-H417, NCI-H526) and BEAS-2B bronchial epithelial cell line were used. To evaluate the NF-${\kappa}B$ expression and DNA binding activity, western blot analysis and an electrophoretic mobility shift assay with the nuclear protein extracts. Results : The basal expressions of the p65 and p50 subunits were observed in the BEAS-2B cell line and all lung cancer cell lines except for NCI-H358 and NCI-H460. The expression levels of p65 and p50 were increased 30 minutes after stimulation with TNF-${\alpha}$ in BEAS-2B and in 10 lung cancer cell lines. In the NCI-H358 and NCI-H460 cell lines, p65 expression was not observed in the basal and stimulated states and the two p50 related protein levels were higher after stimulation with TNF-${\alpha}$ These new proteins were smaller than p50 and are thought to be variants of p50. In the basal state, NF-${\kappa}B$ was nearly activated in the BEAS-2B and all lung cancer cell lines. The DNA binding activity of the NF-${\kappa}B$ complexes was markedly higher after stimulation with TNF-${\alpha}$ In the BEAS-2B and all lung cancer cell line except for NCI-H358 and NCI-H460, the activated NF-${\kappa}B$ complex was a p65/p50 heterodimer. In the NCI-H358 and NCI-H460 lung cancer cell lines, the NF-${\kappa}B$ complex was variant of a p50/p50 homodimer. Conclusion : The NF-${\kappa}B$ activation pattern in the lung cancer cell lines and the normal bronchial epithelial cell lines was similar except for the activation of a variant of the p50/p50 homodimer in some lung cancer cell linse.