• Title/Summary/Keyword: Western Blot

Search Result 2,774, Processing Time 0.031 seconds

Inhibitory effects of Sargassum horneri extract against endoplasmic reticulum stress in HepG2 cells (괭생이 모자반 추출물의 소포체 스트레스 억제 효능)

  • Park, Sora;Thomas, Shalom Sara;Cha, Youn-Soo;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.53 no.6
    • /
    • pp.583-595
    • /
    • 2020
  • Purpose: This study examined the effects of Sargassum horneri extracts on palmitic acid (PA)-induced endoplasmic reticulum (ER) stress in HepG2 cells. Methods: HepG2 cells were treated with varying concentrations of S. horneri extract or PA, and the cell viability was measured by water soluble tetrazolium salts analysis. The effective induction of ER stress and the effects of S. horneri were investigated through an examination of the ER stress-related genes, such as activating transcription factor 4 (ATF4), X-box binding protein (XBP1s), C/EBP homologous protein (CHOP), and 78-kDa glucose-regulated protein (GRP78) by quantitative reverse transcription polymerase chain reaction. The expression and activation levels of unfolded protein response (UPR) associated proteins, such as inositol-requiring enzyme-1α (IRE1α), eukaryotic translation initiation factor 2 alpha submit (eIF2α), and CHOP were examined by western blot analysis. Results: The treatment with PA increased the expression of UPR associated genes significantly and induced ER stress in a 12-hour treatment. Subsequent treatment with S. horneri reduced mRNA expression of ATF4, GRP78, and XBP1s. In addition, the protein levels of phosphate (p)-IRE1α, p-elF2α, and CHOP were also reduced by a treatment with S. horneri. An analysis of sirtuin (SIRT) mRNA expression in the S. horneri and PA-treated HepG2 cells showed that S. horneri increased the levels of SIRT2, SIRT6, and SIRT7, which indicates a possible role in reducing the expression of ER stress-related genes. Conclusion: These data indicate that S. horneri can exert an inhibitory effect on ER stress caused by PA and highlight its potential as an agent for managing various ER stress-related diseases.

Anti-Arthritic Effect of Sogyunghwalhyel-tang-gamibang (소경활혈탕가미방(疎經活血湯加味方)의 관절염에 미치는 효과)

  • Jo, Joo-hyun;Im, Ji-sung;Kim, Jong-gyu;Park, Jung-hyun;Choi, Hag-soon;Hwang, Geu-won;Song, Yung-sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.33-46
    • /
    • 2021
  • Objectives The aim of this study is to evaluate anti-inflammatory and anti-arthritic effects of Sogyunghwalhyel-tang-gamibang (SGHHTGB) in cell and animal models and also to suggest one of putative mechanisms underlying its anti-arthritic effects. Methods Enzyme-linked immunosorbent assay was applied to measure the concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and prostaglandin E2 (PGE2) in culture medium and blood serum and nitric oxide (NO) was assayed by Griess reagent. The expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were analyzed by Western blot method. Results In a cell model using RAW264.7 macrophages stimulated with the endotoxin lipopolysaccharide (LPS), the drug, at its non-cytotoxic concentrations, inhibited the production of the pro-inflammatory cytokine TNF-α, IL-1β and IL-6. In addition, it suppressed the expression of the inflammatory enzyme iNOS and COX-2, and reduced the synthesis of the enzyme product NO (as stable nitrite) and PGE2 in activated macrophages. Meanwhile, in an animal model using rheumatic arthritis (RA) mice induced with injection of type II collagen antibody (CAb) and LPS, the drug improved clinical symptom of arthritis and reduced paw thickness and inflammatory cell infiltration. In blood of RA mice, the drug reduced serum levels of TNF-α, IL-1β, IL-6, nitrite, and PGE2, all inflammatory mediators produced by activated macrophages. Conclusions SGHHTGB may ameliorate CAb and LPS-induced RA in mice, presumably by inactivating macrophages that are capable of initiating joint inflammation by producing pro-inflammatory cytokines and expressing inflammatory enzymes.

The protective effect of Citrus unshiu Peel water extract through PI3K/Akt/NF-κB signaling pathway in mice with HCl/ethanol-induced acute gastritis (HCl/ethanol로 유발한 급성 위염 마우스에서 PI3K/Akt/NF-κB 신호전달경로를 통한 진피 열수 추출물의 보호 효과)

  • Lee, Se Hui;Shin, Mi-Rae;Park, Hae-Jin;Roh, Seong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.288-296
    • /
    • 2022
  • This study aimed to verify the effect of Citrus unshiu peel water extract (CUP) on a mouse model of acute gastritis (AG) induced by HCl/ethanol. Several studies have found that CUP has anti-inflammatory effects. The AG model was induced by oral administration of 150 mM HCl/60% ethanol (550 µL) to all groups except the control group. Also, for drug treatment, sucralfate (10 mg/kg) and CUP (100 or 200 mg/kg) were orally administered for 90 minutes before induction. The effect of CUP treatment was confirmed by gross gastric mucosal damage measurement, and the levels of Glutamic Oxaloacetic Transaminase (GOT), Glutamic Pyruvic Transaminase (GPT), and myeloperoxidase were reduced as well as the levels of oxidative stress biomarkers and their related proteins. In addition, the levels of inflammatory proteins, mediators, and cytokines were significantly downregulated byPI3K/Akt signaling. Taken together, these results show that CUP treatment alleviates AG by regulating PI3K/Akt signaling.

Effect of Halophyte (Spartina anglica and Calystegia soldanella) Extracts on Skin Moisturizing and Barrier Function in HaCaT Cells (염생식물인 갯끈풀과 갯메꽃 추출물의 HaCaT 세포에서 피부 보습 및 피부 장벽 기능에 미치는 영향)

  • Ha, Yuna;Jeong, JaeWoo;Lee, Won Hwi;Oh, Jun Hyuk;Kim, Youn-Jung
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • As aging progresses, reactive oxygen species (ROS) reduces skin moisturization and collapses skin barrier function. In this study, we evaluated the efficacy of skin moisturizing and skin barrier function enhancement by extracts from halophytes using HaCaT cells. Spartina anglica (S. anglica; SAE) and Calystegia soldanella (C. soldanella; CSE), a kind of halophytes, were collected from Dongmak beach in Incheon, and extracted with 70% ethanol. At the first, we evaluated the cytotoxicity of extracts in HaCaT cell using WST-8 Kit. As a result, the other experiment was conducted by setting the concentration at which the cell viability was 90% or more. SAE and CSE showed high radical scavenging activity through ABTS assay. Expression levels of genes related to skin moisturizing and skin barrier functions, were analyzed by real-time qPCR. As a result, it showed that the expression of aquaporin 3, hyaluronan synthase 2, and transglutaminase 1 was increased by SAE treatment but not changed by CSE. Activation of extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen activated protein kinase was induced by SAE. These results suggest that SAE can be used as functional materials for cosmetics for skin moisturizing and barrier function enhancement.

Anti-inflammatory effect of soil blue-green algae Nostoc commune isolated from Daejeon National Cemetery (국립대전현충원에서 분리한 남조류 구슬말(Nostoc commune)의 항염증 효과)

  • Hong, Hyehyun;Bae, Eun Hee;Park, Tae-Jin;Kang, Min-Sung;Kang, Jae Shin;Chi, Won-Jae;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • We examined the anti-inflammatory properties of Nostoc commune HCW0811 in lipopolysaccharide-stimulated RAW264.7 macrophage cells. The anti-inflammatory activity of HCW0811 on viability of treated cells was assessed by measuring the level of expression of NO, prostaglandin E2 and pro-inflammatory cytokines, namely interleukin-1β, interleukin-6, and tumor necrosis factor-α in HCW0811 treated RAW 264.7 macrophages. HCW0811 was non-toxic to cells and inhibited the production of cytokines in a concentration-dependent manner. In addition its treatment suppressed the production of pro-inflammatory cytokines in a dose-dependent manner, and concomitantly decreased the protein expressions of inducible NO synthase and cyclooxygenase-2. Moreover, the levels of the phosphorylation of mitogen-activated protein kinase family proteins such as extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B were reduced by HCW0811. These findings suggest that the HCW0811 collected from Daejeon National Cemetery have anti-inflammatory effects, and demonstrated its efficacy in cell-based in vitro assays.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

Dexmedetomidine and LPS co-treatment attenuates inflammatory response on WISH cells via inhibition of p38/NF-kB signaling pathway

  • Kim, Tae-Sung;Yoon, Ji-Young;Kim, Cheul-Hong;Choi, Eun-Ji;Kim, Yeon Ha;Kim, Eun-Jung
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.4
    • /
    • pp.277-287
    • /
    • 2022
  • Background: Inflammatory dental diseases that occur during pregnancy can cause preterm labor and/or intrauterine growth restriction. Therefore, proactive treatment of dental diseases is necessary during pregnancy. Dexmedetomidine (DEX) is a widely used sedative in the dental field, but research on the effect of DEX on pregnancy is currently insufficient. In this study, we investigated the effects of co-treatment with DEX and lipopolysaccharide (LPS) on inflammatory responses in human amnion-derived WISH cells. Methods: Human amnion-derived WISH cells were treated with 0.001, 0.01, 0.1, and 1 ㎍/mL DEX with 1 ㎍/mL LPS for 24 h. Cytotoxicity of WISH cells was evaluated by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), p38, and nuclear factor kappa B (NF-𝜅B) was examined by western blot analysis. The mRNA expression of pro-inflammatory cytokines such as interleukin (IL)-1𝛽 and tumor necrosis factor (TNF)-𝛼 was analyzed by real-time quantitative polymerase chain reaction. Results: Co-treatment with DEX and LPS showed no cytotoxicity in the WISH cells. The mRNA expression of IL-1𝛽 and TNF-𝛼 decreased after co-treatment with DEX and LPS. DEX and LPS co-treatment decreased the protein expression of COX-2, PGE2, phospho-p38, and phospho-NF-𝛋B in WISH cells. Conclusion: Co-treatment with DEX and LPS suppressed the expression of COX-2 and PGE2, as well as pro-inflammatory cytokines such as IL-1𝛽 and TNF-𝛼 in WISH cells. In addition, the anti-inflammatory effect of DEX and LPS co-treatment was mediated by the inhibition of p38/NF-𝜅B activation.

Restorative effects of Rg3-enriched Korean Red Ginseng and Persicaria tinctoria extract on oxazolone-induced ulcerative colitis in mice

  • Ullah, H.M. Arif;Saba, Evelyn;Lee, Yuan Yee;Hong, Seung-Bok;Hyun, Sun-Hee;Kwak, Yi-Seong;Park, Chae-Kyu;Kim, Sung Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.628-635
    • /
    • 2022
  • Background: Ulcerative colitis (UC) is the large intestine disease that results in chronic inflammation and ulcers in the colon. Rg3-enriched Korean Red Ginseng extract (Rg3-RGE) is known for its pharmacological activities. Persicaria tinctoria (PT) is also used in the treatment of various inflammatory diseases. The aim of this study is to investigate the attenuating effects of Rg3-RGE with PT on oxazolone (OXA)-induced UC in mice. Methods: A total of six groups of mice including control group, OXA (as model group, 1.5%) group, sulfasalazine (75 mg/kg) group, Rg3-RGE (20 mg/kg) group, PT (300 mg/kg) group, and Rg3-RGE (10 mg/kg) with PT (150 mg/kg) group. Data on the colon length, body weight, disease activity index (DAI), histological changes, nitric oxide (NO) assay, Real-time PCR of inflammatory factors, ELISA of inflammatory factors, Western blot, and flow cytometry analysis were obtained. Results: Overall, the combination treatment of Rg3-RGE and PT significantly improved the colon length and body weight and decreased the DAI in mice compared with the treatment with OXA. Additionally, the histological injury was also reduced by the combination treatment. Moreover, the NO production level and inflammatory mediators and cytokines were significantly downregulated in the Rg3-RGE with the PT group compared with the model group. Also, NLR family pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-𝛋B) were suppressed in the combination treatment group compared with the OXA group. Furthermore, the number of immune cell subtypes of CD4+ T-helper cells, CD19+ B-cells, and CD4+ and CD25+ regulatory T-cells (Tregs) was improved in the Rg3-RGE with the PT group compared with the OXA group. Conclusion: Overall, the mixture of Rg3-RGE and PT is an effective therapeutic treatment for UC.

EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1

  • Xiang, Yaoxian;Zhu, Lei;He, Zijian;Xu, Lei;Mao, Yuhang;Jiang, Junjian;Xu, Jianguang
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.790-800
    • /
    • 2022
  • Objective : EID3 (EP300-interacting inhibitor of differentiation) was identified as a novel member of EID family and plays a pivotal role in colorectal cancer development. However, its role in glioma remained elusive. In current study, we identified EID3 as a novel oncogenic molecule in human glioma and is critical for glioma cell survival, proliferation and invasion. Methods : A total of five patients with glioma were recruited in present study and fresh glioma samples were removed from patients. Four weeks old male non-obese diabetic severe combined immune deficiency (NOD/SCID) mice were used as transplant recipient models. The subcutaneous tumor size was calculated and recorded every week with vernier caliper. EID3 and AMP-activated protein kinase α1 (AMPKα1) expression levels were confirmed by real-time polymerase chain reaction and Western blot assays. Colony formation assays were performed to evaluate cell proliferation. Methyl thiazolyl tetrazolium (MTT) assays were performed for cell viability assessment. Trypan blue staining approach was applied for cell death assessment. Cell Apoptosis DNA ELISA Detection Kit was used for apoptosis assessment. Results : EID3 was preferentially expressed in glioma tissues/cells, while undetectable in astrocytes, neuronal cells, or normal brain tissues. EID3 knocking down significantly hindered glioma cell proliferation and invasion, as well as induced reduction of cell viability, apoptosis and cell death. EID3 knocking down also greatly inhibited tumor growth in SCID mice. Knocking down of AMPKα1 could effectively rescue glioma cells from apoptosis and cell death caused by EID3 absence, indicating that AMPKα1 acted as a key downstream regulator of EID3 and mediated suppression effects caused by EID3 knocking down inhibition. These findings were confirmed in glioma cells generated patient-derived xenograft models. AMPKα1 protein levels were affected by MG132 treatment in glioma, which suggested EID3 might down regulate AMPKα1 through protein degradation. Conclusion : Collectively, our study demonstrated that EID3 promoted glioma cell proliferation and survival by inhibiting AMPKα1 expression. Targeting EID3 might represent a promising strategy for treating glioma.

Gaseous signal molecule SO2 regulates autophagy through PI3K/AKT pathway inhibits cardiomyocyte apoptosis and improves myocardial fibrosis in rats with type II diabetes

  • Zhao, Junxiong;Wu, Qian;Yang, Ting;Nie, Liangui;Liu, Shengquan;Zhou, Jia;Chen, Jian;Jiang, Zhentao;Xiao, Ting;Yang, Jun;Chu, Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.541-556
    • /
    • 2022
  • Myocardial fibrosis is a key link in the occurrence and development of diabetic cardiomyopathy. Its etiology is complex, and the effect of drugs is not good. Cardiomyocyte apoptosis is an important cause of myocardial fibrosis. The purpose of this study was to investigate the effect of gaseous signal molecule sulfur dioxide (SO2) on diabetic myocardial fibrosis and its internal regulatory mechanism. Masson and TUNEL staining, Western-blot, transmission electron microscopy, RT-qPCR, immunofluorescence staining, and flow cytometry were used in the study, and the interstitial collagen deposition, autophagy, apoptosis, and changes in phosphatidylinositol 3-kinase (PI3K)/AKT pathways were evaluated from in vivo and in vitro experiments. The results showed that diabetic myocardial fibrosis was accompanied by cardiomyocyte apoptosis and down-regulation of endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2. However, exogenous SO2 donors could up-regulate AAT1/2, reduce apoptosis of cardiomyocytes induced by diabetic rats or high glucose, inhibit phosphorylation of PI3K/AKT protein, up-regulate autophagy, and reduce interstitial collagen deposition. In conclusion, the results of this study suggest that the gaseous signal molecule SO2 can inhibit the PI3K/AKT pathway to promote cytoprotective autophagy and inhibit cardiomyocyte apoptosis to improve myocardial fibrosis in diabetic rats. The results of this study are expected to provide new targets and intervention strategies for the prevention and treatment of diabetic cardiomyopathy.