• Title/Summary/Keyword: West-southern Coast

Search Result 148, Processing Time 0.033 seconds

A study on the halophyte vegetation and halophyte flora characteristics of coastal ecosystem in the West and South coasts in Korea (한국 서·남해안 연안생태계의 염생식물군락과 염생식물상의 특성에 관한 연구)

  • Ji Won Park;Eui Joo Kim;Jung Min Lee;Yoon Seo Kim;Yeo Bin Park;Jae Hoon Park;Se Hee Kim;Kyeong Mi Cho;Yoon Kyung Choi;Ji Hyun Seo;Joo Hyun Seo;Young Han You
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.72-81
    • /
    • 2024
  • Korea is surrounded by the sea on three sides, salt marshes and coastal sand dunes adjacent to them are developed. This study attempted to reveal the characteristics of the coastal ecosystem by investigating and analyzing the characteristics of plant communities and flora of 571stands of 48 sites in the salt marshes and coastal sand dunes on the western and southern coasts of Korea. As a result, in the salt marshes, 39 vegetation units appeared, with Phragmites australis community having the widest area and Chenopodium virgatum community having the narrowest area. Suaeda glauca community was distributed closest to the coastline, while Suaeda maritima community extended the farthest seaward. In the coastal sand dunes, 29 vegetation units were distributed with Elymus mollis community having the widest area and Salsola komarovii community having the narrowest area. Calystegia soldanella community was showed closest to the coastline, while Rosa rugosa community extended the farthest landward. The flora of the salt marshes consisted of 6 families, 14 genera, 17 species, 1 variant, and 18 taxa (floristic regional indicator score; 16) and the coastal sand dunes consisted of 11 families, 18 genera, 20 species, 1 variant, and 21 taxa (floristic regional indicator score; 34) appeared slightly higher than that of salt marshes. This result is interpreted that halophyte that are sensitive to salinity can grow on the coast of the west-south coast of Korea because coastal sand dunes are more indirectly affected by sea than salt marshes.

Tidal Current and Suspended Sediment Transport in the Keum Estuary,West Coast of Korea (錦江 鹽河口에서의 潮流와 浮游堆積物 이동)

  • 오임상;나태경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.147-162
    • /
    • 1995
  • The circulation due to tidal current and river discharge, and the associated suspended suspended sediment transport in macrotidal Keum Estuary, were studied through a series of field measurements of tidal currents and suspended sediment concentration at three anchored stations from 1990 through 1992. From the measurements, the following results were obtained. At the seaward entrance of the estuary, the veritical profiles of the ebb and flood currents were almost symmetric. At the southern channel the flood current was dominant in the whole water column, but in the northern channel the ebb current was dominant in the surface and bottom layers and the flood current was dominant in the intermediate layer. The maximum velocity of the tidal current in the southern channel was 174 cm/s during flood tide in the intermediate layer. The maximum velocity, 148 cm/s in the northern channel also appeared during flood tide in the intermediate layer. However, in the surface and bottom layers, the maximum velocities were 110.6 cm/s during ebb tide and 92.1 cm/s during flood tide, respectively. The type of the Keum Estuary can be categorized to 'Type 3' of Hansen and Rattray's scheme. The water column of the estuary during the flood tide becomes stratified, and after high water the ebb current reduces the density difference and the water column becomes turbulent. The lower layer of the water column is generally turbulent. The largest sediment flux 20.61 ton/s was found in the southern channel during flood current in the lowest river discharge (May, 1991), while the smallest flux, 0.65 ton/s in the northern channel in the lowest tidal range (July, 1992). The stronger bottom shear velocity for the present study area seems to erode the bottom sediments during the flood tide, and the relatively long duration of the ebb tide to transport the suspended sediments. Under normal river discharge conditions, the suspended sediments are transported mainly through the southern channel. However, under high river discharge condition the suspended sediment transport is dominant through the northern channel.

  • PDF

A Study on the Temperature fronts observed in the South-West Sea of Korea and the Northern Area of the East China Sea (한국 남$\cdot$서해 및 동중국해 북부해역에 출현하는 수온전선)

  • YANG Young Jin;KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.695-706
    • /
    • 1998
  • SST (Sea Surface. Temperature) fronts which were found in the South-West Sea of Korea and the northern area of the East China Sea were examined in order to clarify their positions, shapes, seasonal changes and the formation mechanism, For this study used SST data rearranged from the SST IR image during 1991 to 1996 and oceanographical data obtained by National Fisheries Research and Development Institute. Temperature front in the Cheju Strait was analyzed by the data obtained from a fisheries guidance ship of Cheju Provincial Government, The coastal frontal zone in the South-West Sea of Korea and the offshore frontal zone in the northern area of the East China Sea can be divided into several types (Type of Winter, Summer, Spring, Autumn and late Autumn), Short term variations of SST fronts have a tendency not to move to any Bleat extent for several days. The location of the frontal zone in the southwestern sea of Cheju Island changes on a much large scale than that of the one in the southern coast of Korea, The frontal Tone, formed every year in the southern sea of Korea approaches closer to the coastal area in winter, and moves closer to the south in spring and autumn. The frontal zone of the southwestern sea of Cheju Island moves in a westerly direction from the east, and reaches its most westerly point in the winter and its most easterly point in the summer related to the seasonal change of the Tsushima Current. Additionally, the frontal zone of the southwestern sea of Korea becomes extremely weak in March, April and November. SST fronts are formed every year around the line connecting Cheju Island to Yeoseo Island or to Chungsan Island in the Cheju Strait. A Ring-shaped tidal mixing front appears along the coastal area of Cheju Island throughout the year except during the months from November to January. Especially, in May and October fronts are formed between the coastal waters of Cheju Island and the Tsushima currents connecting the frontal zone of the coastal region in the southern sea of Korea with that of the southwestern sea of Cheju Island.

  • PDF

Occupancy Probability Estimation of Endangered Species Clithon retropictus (멸종위기종인 기수갈고둥의 잠재적 서식지 예측을 위한 점유 확률 추정)

  • Park, Woong-Bae;Lim, Sung-Ho;Won, Doo-Hee;Lee, Kyung-Lak;Hong, Cheol;Do, Yuno
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.76-83
    • /
    • 2022
  • We attempted to estimate potential habitats of Clithon retropictus and to determine the community structure of benthic macroinvertebrates by presence of C. retropictus. 2016 to 2018 database of "Survey and Assessment of Estuary Ecosystem Health" by the Ministry of Environment were used to identify the distribution site of C. retropictus. The occupancy model was applied to estimate the potential habitat of C. retropictus. Four diversity indices were used to confirm the community structure of benthic macroinvertebrates. C. retropictus was found in the southern coast area and part of the east coast, and this pattern was consistent with previous studies. Additionally, the occupancy model predicted that a potential habitat of C. retropictus could appear in the west coast area. The community structure of benthic macroinvertebrates was relatively high at the site with C. retropictus than the site without C. retropictus. Therefore, the occupancy model can be considered when conserving C. retropictus inhabiting a limited area. Additionally, C. retropictus can be used to the indicator species that can represent the brackish water environment.

Analysis of Red Tide Movement in the South Sea of Gyeongnam Province Using the GOCI Images of COMS (천리안 위성영상을 이용한 경상남도 남해안해역 적조이동 패턴 분석)

  • Kim, Dong Kyoo;Kim, Mi Song;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • Red Tide phenomenon which happens in the southern coast of Korea gives massive damage to the fishermen who run fish farms and thereby a lot of efforts to prevent damage are made from various angles. In particular, red tide monitoring with satellite imagery can make it possible to obtain the occurrence data of red tide throughout the whole areas of the sea, which helps provide important information for establishing the preventive plans of disasters. In this regard, this study selected the South Sea of Gyeongnam Province with a view to suggesting the monitoring results with regard to the spread and reduction of the Red Tide in the middle of the day by using the GOCI Images of COMS. With this intention, it selected the region in the South Sea of Gyeongnam Province. The study results of analysis on the GOCI image data for the years of 2013(Aug. 12) and 2014 (Sep. 11) are as follows: the pattern of the Red Tide in the region of the South Sea occurred in the southern sea area of Geoje-do in the morning. It gradually spread and showed a gradual decline after reaching the top at 1 PM. In addition, in terms of the tide movement in the middle of the day, Red Tide began in the southern sea area and moved to the west, and moved to the east again at noon. It is judged that additional study on many factors such as the characteristics of the future Red-tide organisms, tidal currents, amount of sunshine, and water temperature is needed, but it is estimated that Red Tide movement monitoring with GOCI images would provide very crucial information for predicting the spread and movement of the Red Tide to protect and manage the Red Tide disasters.

Characteristics of Waterbird Community at Coastal Wetlands in the South and West Coasts, Korea (서·남해안 연안습지의 수조류 군집특성)

  • SHIN, YONG-UN;HAN, SEUNG-WOO;LEE, SI-WAN;HWANG, IN SEO;PARK, CHI-YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.160-169
    • /
    • 2019
  • The migration status of waterbirds inhabiting the 10 coastal wetlands in the south and west coasts (Jangbongdo, Muuido, Daecheoncheon estuary, Seocheon tidal flat, Yubudo, Gomso bay, Hauido, Jeungdo, Doam bay, Gangjin bay) was examined from May 2008 to March 2013. For the most dominant taxonomical group, shorebirds accounted for 37.5% of the number of species and 67.1% of the total population, followed in the order of dabbling ducks, herons, and seagulls. The dominate species were Calidris alpina, Larus crassirostris, Limosa lapponica, Charadrius alexandrinus, and Calidris tenuirostris. Shorebirds were observed most at Seocheon Tidal Flats and Yubudo Island, and dabbling ducks were found most in Doam Bay. Diving ducks were observed most at Gangjin Bay and seagulls were seen most frequently at Seocheon Tidal Flats. The ten coastal wetlands of the western and southern coasts were divided into three groups according to the similarity index of waterbirds (Ro). Group 1 was the area where dabbling ducks and diving ducks were dominant, group 2 was the area where shorebirds were dominant, and group 3 was the area where seagulls were dominant. It was evident that there were differences in species composition depending on the regional environments.

Seasonal sea Level oscillations in the East Sea (Sea of Japan) (동해 해수면의 계절적인 변동에 대하여)

  • OH, IM SANG;RABINOVICH, ALEXANDER B.;PARK, MYOUNG SOOK;MANSUROV, ROALD N.
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The monthly mean sea levels at 48 stations located at the East and Yellow Seas coasts of Korea, Russia and Japan are processed to investigate seasonal sea level variations. The strong seasonal variations are found to be at the west coast of Korea (42.1 cm in Kunsan), in the region of the Korea strait and near the southern part of Primorye (30-33 cm); the weak ones near the southwestern coast of the Sakhalin Island (10-12 cm). Practically for the whole study area except the southwest Sakhalin, the general picture of the seasonal sea level changes is alike: the mean sea level rises in summer-autumn and falls in winter-spring. The spectral analysis of the records also shows that the seasonal oscillations strongly dominate in the sea level variations, more than 80% or total energy in the southern part of the investigated region and 50-70% in the northern part relate to these oscillations. The annal peak significantly prevails in spectra of the monthly sea levels for the majority of stations, the semiannual peak is also well manifested, but the seasonal peaks of higher order (corresponding to the periods of four and three months) reveal only at some records. The maximal amplitudes of annual component by a least square method are found at the Yellow Sea coast of Korea (20-21 cm) and also near the Japanese coast of the korea Strait (19-19 cm). The semiannual component has the maximal amplitudes (3-4 cm) near the south and southwestern coasts of the Sakhalin Island. The annual range of the sea levels is much weaker here than in the other regions, the relative investment of the seasonal oscillations in total energetic budget is only 35-40%, annual ($A_1$) and semiannual ($A_2$) components have nearly the same amplitude (seasonal factor $F=A_1/A_2=0.9-1.2$). On the basis of the present examination on sea level changes together with the results of Tomizawa et. al.(1984) the whole investigated area may be divided into 10 subregions, 2 of them are related to the Yellow Sea and Western part of the Korea Strait (Y1, Y2), the other ones (E1-E8) to the East Sea.

  • PDF

The Synoptic Meteorological Characteristics of Spring Rainfall in South Korea during 2008~2012 (최근 5년(2008~2012) 간 우리나라에 내린 봄비의 종관기상학적 특성)

  • Park, So-Yeon;Lee, Yong-Gon;Kim, Jung-Yun;Ahn, Suk-Hee;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.443-451
    • /
    • 2013
  • Spring rainfall events were comprehensively analyzed based on the distribution of precipitation amount and the related synoptic weather between 2008~2012. Forty-eight cases are selected among the rain events of the entire country, and each distribution of the 24-hour accumulated precipitation amount is classified into three types: evenly distributed rain(Type 1), more rain in the southern area and south coast region (Type 2), and more rain in the central region (Type 3), respectively. Type 1 constitutes the largest part(35 cases, 72.9%) with mean precipitation amount of 19.4 mm, and the 17 cases of Type 1 are observed in March. Although Type B and C constitutes small parts (11 cases, 22.9% and 2 cases, 4.2%), respectively. The precipitation amount of these types is greater than 34.5 mm and occurred usually in April. The main synoptic weather patterns affecting precipitation distribution are classified into five patterns according to the pathway of low pressures. The most influential pattern is type 4, and this usually occurs in March, April, and May (Low pressures from the north and the ones from the west and south consecutively affect South Korea, 37.5%). The pattern 3(Low pressures from the south affect South Korea, 25%) happens mostly in April, and the average precipitation is usually greater than 30 mm. This value is relatively higher than the values in any other patterns.

Spatial and Temporal Variation of Grain Size of the Surface Sediments in Kwangyang Bay, South Coast of Korea (한반도 남해안 광양만 표층퇴적물 입도의 시ㆍ공간적 변화)

  • 류상옥
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.340-348
    • /
    • 2003
  • Sedimentological investigations on surface and suspended sediments were performed in Kwangyang Bay of the middle South Sea in order to reveal recent changes in depositional environments concerning anthropogenic influence. A variety of coastal developments caused the texture of the surface sediments to become distinctively finer, particularly in the southwestern part of the bay. Accordingly, the westward lining sedimentary facies was somewhat simplified from triple-mode distribution to the dual-mode one by the construction of POSCO. This east-west distribution to the sedimentary facies has recently graded into the north-south distribution by further construction of other industrial complexes including Kwangyang Port. The prominent textural changes in surface sediments are most likely associated with weakening of tidal currents related to the developments which is anticipated to be .still continued. The distribution and flux estimation of suspended sediments suggest a noticeable import of fine particles into the bay predominantly through a northern entrance rather than the southern entrance. The movements of suspended sediments in the water level near the seabed prevailed over those of the mid and surficial levels.

The Response of Temperature and Velocity Fields to $M_2$ Tide in Deukryang Bay in the Southern Sea of Korea (득량만에서의 $M_2$조에 대한 수온장 및 유속장의 응답)

  • HONG Chul-hoon;CHOI Yong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.667-678
    • /
    • 1997
  • A primitive equation numerical model driven only by $M_2$ tide is used to examine role of tide in the temperature and velocity fields of Deukryang Bay. The numerical model reproduces several features of the observational temperature fields such that the isotherms tend to be parallel to the coast in the bay, and the colder water exists at the right hand side in the bay. The horizontal temperature and velocity fields in the model are dominantly influenced by bottom topography. The model also shows that the surface colder water in the bay is accompanied by strong-alongshore current during the flood tide. An investigation for baroclinicity in the bay by additional numerical experiment indicates that the baroclinirity in velocity field is very weak. The model, however, did not reproduce a stratification in the observation, implying that the model needs to add other semi-diurnal components such as $S_2,\;O_2\;or\;K_2$ tides to $M_2$ tide.

  • PDF