• Title/Summary/Keyword: Well-regulated

Search Result 917, Processing Time 0.025 seconds

Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells

  • Lee, Hyunkyung;Lee, Seungyeon;Jeong, Dawoon;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.455-462
    • /
    • 2018
  • Background: Ginsenoside Rh2 has been known to enhance the activity of immune cells, as well as to inhibit the growth of tumor cells. Although the repertoire of genes regulated by Rh2 is well-known in many cancer cells, the epigenetic regulation has yet to be determined, especially for comprehensive approaches to detect methylation changes. Methods: The effect of Rh2 on genome-wide DNA methylation changes in breast cancer cells was examined by treating cultured MCF-7 with Rh2. Pyrosequencing analysis was carried out to measure the methylation level of a global methylation marker, LINE1. Genome-wide methylation analysis was carried out to identify epigenetically regulated genes and to elucidate the most prominent signaling pathway affected by Rh2. Apoptosis and proliferation were monitored to examine the cellular effect of Rh2. Results: LINE1 showed induction of hypomethylation at specific CpGs by 1.6-9.1% (p < 0.05). Genome-wide methylation analysis identified the "cell-mediated immune response"-related pathway as the top network. Cell proliferation of MCF-7 was retarded by Rh2 in a dose-dependent manner. Hypermethylated genes such as CASP1, INSL5, and OR52A1 showed downregulation in the Rh2-treated MCF-7, while hypomethylated genes such as CLINT1, ST3GAL4, and C1orf198 showed upregulation. Notably, a higher survival rate was associated with lower expression of INSL5 and OR52A1 in breast cancer patients, while with higher expression of CLINT1. Conclusion: The results indicate that Rh2 induces epigenetic methylation changes in genes involved in immune response and tumorigenesis, thereby contributing to enhanced immunogenicity and inhibiting the growth of cancer cells.

MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, Eun-A;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.447-452
    • /
    • 2022
  • Neurogenic differentiation 1 (NeuroD1) is an essential transcription factor for neuronal differentiation, maturation, and survival, and is associated with inflammation in lipopolysaccharide (LPS)-induced glial cells; however, the concrete mechanisms are still ambiguous. Therefore, we investigated whether NeuroD1-targeting miRNAs affect inflammation and neuronal apoptosis, as well as the underlying mechanism. First, we confirmed that miR-30a-5p and miR-153-3p, which target NeuroD1, reduced NeuroD1 expression in microglia and astrocytes. In LPS-induced microglia, miR-30a-5p and miR-153-3p suppressed pro-inflammatory cytokines, reactive oxygen species, the phosphorylation of c-Jun N-terminal kinase, extracellular-signal-regulated kinase (ERK), and p38, and the expression of cyclooxygenase and inducible nitric oxide synthase (iNOS) via the NF-κB pathway. Moreover, miR-30a-5p and miR-153-3p inhibited the expression of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, NLRP3, cleaved caspase-1, and IL-1β, which are involved in the innate immune response. In LPS-induced astrocytes, miR-30a-5p and miR-153-3p reduced ERK phosphorylation and iNOS expression via the STAT-3 pathway. Notably, miR-30a-5p exerted greater anti-inflammatory effects than miR-153-3p. Together, these results indicate that miR-30a-5p and miR-153-3p inhibit MAPK/NF-κB pathway in microglia as well as ERK/STAT-3 pathway in astrocytes to reduce LPS-induced neuronal apoptosis. This study highlights the importance of NeuroD1 in microglia and astrocytes neuroinflammation and suggests that it can be regulated by miR-30a-5p and miR-153-3p.

The Consequences of Mutations in the Reproductive Endocrine System

  • Choi, Donchan
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.235-251
    • /
    • 2012
  • The reproductive activity in male mammals is well known to be regulated by the hypothalamus-pituitary-gonad axis. The hypothalamic neurons secreting gonadotropin releasing hormone (GnRH) govern the reproductive neuroendocrine system by integrating all the exogenous information impinging on themselves. The GnRH synthesized and released from the hypothalamus arrives at the anterior pituitary through the portal vessels, provoking the production of the gonadotropins(follicle-stimulating hormone (FSH) and luteinizing hormone (LH)) at the same time. The gonadotropins affect the gonads to promote spermatogenesis and to secret testosterone. Testosterone acts on the GnRH neurons by a feedback loop through the circulatory system, resulting in the balance of all the hormones by regulating reproductive activities. These hormones exert their effects by acting on their own receptors, which are included in the signal transduction pathways as well. Unexpected aberrants are arised during this course of action of each hormone. This review summarizes these abnormal phenomena, including various mutations of molecules and their actions related to the reproductive function.

EXPERIMENTAL ESOPHAGITIS AND SIGNAL TRANSDUCTION TO SMOOTH MUSCLE MOTILITY

  • Sohn, Uy-Dong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.11a
    • /
    • pp.41-46
    • /
    • 1997
  • Lower esophageal sphincter (LES) is characterized by the ability to maintain a sustained pressure, and to relax allowing the passage of a bolus, whereas the esophagus is normally relaxed and contracts only briefly when required to produce peristalsis (fig. 1). The neuromuscular mechanisms that participate in the physiological regulation of these functions are not well understood, but it is thought that LES tone is spontaneous and regulated mostly through myogenic mechanisms, whereas LES relaxation and esophageal contraction are induced by neural mechanisms. Gastroesophageal reflux represents the effortless movement of gastric contents from stomach to esophagus. Because this phenomenon occurs in virtually everyone multiple times every day and in the majority of people without clinical consequences, the reflux per se is not disease. However in some cases, it can be pathologic, producing symptoms and signs called gastroesophageal reflux disease (GERD), which mechanism is not well known. It may result in heart burn, chronic esophagitis, aspiration pneumonia, esophageal strictures, and Barrett's esophagus.

  • PDF

Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals

  • Yang, Dong Won;Park, Won Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.108-115
    • /
    • 2018
  • The increasing demands for three-dimensional (3D) electronic and optoelectronic devices have triggered interest in epitaxial growth of 3D semiconductor materials. However, most of the epitaxially-grown nano- and micro-structures available so far are limited to certain forms of crystal arrays, and the level of control is still very low. In this review, we describe our latest progress in 3D epitaxy of oxide and nitride semiconductor crystals. This paper covers issues ranging from (i) low-temperature solution-phase synthesis of a well-regulated array of ZnO single crystals to (ii) systematic control of the axial and lateral growth rate correlated to the diameter and interspacing of nanocrystals, as well as the concentration of additional ion additives. In addition, the critical aspects in the heteroepitaxial growth of GaN and InGaN multilayers on these ZnO nanocrystal templates are discussed to address its application to a 3D light emitting diode array.

A Continuously Tunable LC-VCO PLL with Bandwidth Linearization Techniques for PCI Express Gen2 Applications

  • Rhee, Woo-Geun;Ainspan, Herschel;Friedman, Daniel J.;Rasmus, Todd;Garvin, Stacy;Cranford, Clay
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.200-209
    • /
    • 2008
  • This paper describes bandwidth linearization techniques in phase-locked loop (PLL) design for common-clock serial link applications. Utilizing a continuously tunable single-input dual-path LC VCO and a constant-gain phase detector, a proposed architecture is well suited to implementing PLLs that must be compliant with standards that specify minimum and maximum allowable bandwidths such as PCI Express Gen2 or FB-DIMM applications. A prototype 4.75 to 6.1-GHz PLL is implemented in 90-nm CMOS. Measurement results show that the PLL bandwidth and random jitter (RJ) variations are well regulated and that the use of a differentially controlled dual-path VCO is important for deterministic jitter (DJ) performance.

Development of Robust Algorithm to Eliminate Low Frequency Current Ripples in Fuel Cell Generation System (동적변화에 강인한 연료전지 발전시스템의 저주파 리플전류 제거 알고리즘 개발)

  • Kim, Jong-Soo;Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1720-1727
    • /
    • 2009
  • This paper presents that generation and propagation mechanism of low frequency current ripples generated by a rectification effect of an inverter in fuel cell generation system is analyzed. The ripple reduction methode using hardware components such as capacitors and inductors is examined to reduce low frequency current ripples. A new fast and robust low frequency current ripple elimination algorithm is then proposed to incorporate a single loop current controller, which directly controls fuel cell current, without any extra hardware. The proposed algorithm can completely eliminate this current ripple as well as an overshoot or undershoot is significantly reduced. And the de link voltage and output current are well regulated by inverter controller. The validity of proposed algorithm is verified both computer simulation using PSIM 6.0 and experiment with a 1kW laboratory prototype.

DPS Board Appication for Regulation of Cutting Force under Varying Cutting Conditions during Milling Process (밀링공정중 절삭조건 변화에 따른 절삭력 추종제어를 위한 DSP보드 응용)

  • Oh, Young-Tak;Kwon, Won-Tae;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.38-46
    • /
    • 1999
  • Spindle motor current is used to estimate the cutting force indirectly and control the feed rate for the cutting force regulation. The proposed algorithm is implemented to a DSP board based hardware for the industrial application. The software to make POP terminal communicate with the DSP board and POP server is coded under Windows 95 environment. Experiments under varying cutting conditions show that the DSP board recognizes the information of installed cutting tool and cutting conditions delivered from the POP server to use them for the proper control of the feed rate. The cutting force is regulated well during machining of tapered or stepped workpiece and circular shaped workpiece as well.

  • PDF

Tree of life: endothelial cell in norm and disease, the good guy is a partner in crime!

  • Basheer Abdullah Marzoog
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.166-178
    • /
    • 2023
  • Undeniably, endothelial cells (EC) contribute to the maintenance of the homeostasis of the organism through modulating cellular physiology, including signaling pathways, through the release of highly active molecules as well as the response to a myriad of extrinsic and intrinsic signaling factors. Review the data from the current literature on the EC role in norm and disease. Endothelium maintains a precise balance between the released molecules, where EC dysfunction arises when the endothelium actions shift toward vasoconstriction, the proinflammatory, prothrombic properties after the alteration of nitric oxide (NO) production and oxidative stress. The functions of the EC are regulated by the negative/positive feedback from the organism, through EC surface receptors, and the crosstalk between NO, adrenergic receptors, and oxidative stress. More than a hundred substances can interact with EC. The EC dysfunction is a hallmark in the emergence and progression of vascular-related pathologies. The paper concisely reviews recent advances in EC (patho) physiology. Grasping EC physiology is crucial to gauge their potential clinical utility and optimize the current therapies as well as to establish novel nanotherapeutic molecular targets include; endothelial receptors, cell adhesion molecules, integrins, signaling pathways, enzymes; peptidases.

Assessment of Probability Flood according to the Flow Regulation by Multi-purpose Dams in Han-River Basin (한강유역의 다목적댐 운영에 따른 빈도홍수량의 평가)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • The purpose of this study is to evaluate the variation of probability flood according to the flow regulation by multi-purpose dams (Soyang and Chungju) in the Han-river basin, Korea. SWAT-K (Soil and Water Assessment Tool-Korea) was used in order to generate regulated and unregulated daily streamflows upstream of Paldang dam. Simulated flow regulated by the Soyang and Chungju dams was calibrated by comparison with the observed inflow data at Paldang reservoir. Generally the ratio of flood flows to daily streamflows is known to decrease with drainage area in a watershed. Regulated and unregulated flood flows were obtained from the relationship between flood flows and daily streamflows. Extreme Type-I distribution was applied for flood frequency analysis and L-moment method was used for parameter estimation. This is a novel approach capable of understanding the variation in flood frequency with dam operation for the relatively large watershed scale, and this will helps improve the applicability of daily stream flow data for use in flood control as well as in water utilization.