• Title/Summary/Keyword: Welding work process

Search Result 173, Processing Time 0.027 seconds

Study on Optimal Welding Condition for Shipbuilding Steel Materials (조선강재의 최적 용접조건에 관한 연구)

  • Kim, Ok-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.128-133
    • /
    • 2011
  • In this study, the steel material for shipbuilding(LR-A class) was used, and FCAW was taken advantage of 3G attitude and they are welded by different welding ways. As a result of analyzing wave with welding monitoring system, the stable values are obtained which are the first floor(electronic current 164~182 A, voltage 24 V), the second floor(electronic current 174~190 A, voltage 22~25 V), the third floor(electronic current 158~188 A, voltage 22~25 V), and fourth floor(electronic current 172~184 A, voltage 22~25 V), at this time, the stable wave standard deviation and changing coefficient could be obtained. When the welding testing through nondestructive inspection was analyzed know defect of welding, there was no defect of welding in A, D, E, but some porosities in B, and slag conclusion near the surface in C, because the length of arc was not accurate, and the electronic current and voltage was not stable. After observing the change of heat affect zone through micro testing, each organization of floor formed as Grain Refinement, so welding part was fine, the distance of heat affect zone is getting wider up to change the values of the electronic current and voltage. As a result of degree of hardness testing, the hardness orders were the heat affect zone(HAZ), Welding Zone(WZ), and Base Metal(BM). When the distribution of degree of hardness is observed. B is the highest degree of hardness The reason why heat effect zone is higher than welding zone and base metal, welding zone is boiled over melting point($1539^{\circ}C$) and it starts to melt after the result of analysis through metal microscope, so we can know that delicate tissue is created at the welding zone. Therefore, in order to get the optimal conditions of the welding, the proper current of the welding and voltage is needed. Furthermore the precise work of welding is required.

Development of a Wall-climbing Welding Robot for Draft Mark on the Curved Surface (선수미 흘수마크 용접을 위한 벽면이동로봇 개발)

  • Lee, Jae-Chang;Kim, Ho-Gu;Kim, Se-Hwan;Ryu, Sin-Wook
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.112-121
    • /
    • 2006
  • The vertical displacement of a ship on the basis of the sea level is an important parameter for its stability and control. To indicate the displacement on operating conditions, "draft marks" are carved on the hull of the ship in various ways. One of the methods is welding. The position, shape and size of the marks are specified on the shipbuilding rules by classification societies to be checked by shipbuilders. In most cases, high-skilled workers do the welding along the drawing for the marks and welding bead becomes the marks. But the inaccuracies due to human errors and high labor cost increase the needs for automating the work process of the draft marks. In the preceding work, an indoor robot was developed for automatic marking system on flat surfaces and the work proved that the robot welding was more effective and accurate than manual welding. However, many parts of the hull structure constructed at the outdoor are cowed shapes, which is beyond the capability of the robot developed for the indoor works on the flat surface. The marking on the curved steel surface requiring the 25m elevations is one of the main challenges to the conventional robots. In the present paper, the robot capable of climbing vertical curved steel surfaces and performing the welding at the marked position by effectively solving the problems mentioned earlier is presented.

  • PDF

Performance Evaluation of Protective Clothing Materials for Welding in a Hazardous Shipbuilding Industry Work Environment (조선업의 유해 작업환경 대응을 위한 용접 보호복 소재의 성능평가 연구)

  • Kim, Min Young;Bae, Hyun Sook
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.452-460
    • /
    • 2013
  • This study conducted a performance evaluation of protective clothing materials used for welding in a hazardous shipbuilding industry work environment. The welding process was selected as the one that most requires industrial protective clothing according to work environment characteristics. Flame proofing and convection heat protection performance (HTI) in the heat transfer characteristics of protective clothing material were indicated in the order of SW1(Oxidant carbon)>SW2(silica coated Oxidant carbon)>SW4(Oxidant carbon/p-aramid)>SW3(flame proofing cotton). However, radiant heat protection performance (RHTI) and the heat transfer factor (TF) were indicated in the order of SW1>SW4>SW2>SW3 and showed different patterns from the convection heat protection performance. SW1 showed superior air permeability and water vapor permeability. The tensile strength and tear strength of welding protective clothing material were indicated in the order of SW4>SW2>SW3>SW1 and showed that a blend fabric of p-aramid was the most superior for the mechanical properties of SW4. SW1 had excellent heat transfer properties in yet met the minimum performance requirements of tensile strength proved to be inappropriate as being a material for welding protective clothing. The abrasion resistance of woven fabric proved superior compared to nonwoven fabric; however, seam strength and dimensional change both met the minimum performance requirements and indicated that all samples appeared non-hazardous. Finally, oxidant carbon/p-aramid blend fabric appeared appropriate as a protective clothing materials for welding.

Rapid Manufacturing of 3D Thin-walled Products using Plastics and Metals (플라스틱과 금속재료를 이용한 3 차원 박벽 제품의 쾌속 제작)

  • Shin Bo-Sung;Kang Bo-Sik;Park Jae-Hyun;Rho Chi-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.195-202
    • /
    • 2006
  • High-speed machining (HSM) with excellent quality and dimensional accuracy has been widely used to create 3D structures of metal and plastics. However, the high-speed machining process is not suitable for the rapid realization of 3D thin-walled product because it consumes considerably long time in fixturing process of a work piece. In this paper, an effective rapid manufacturing process is proposed to fabricate 3D thin-walled products directly using HSM, phase change filling and ultrasonic welding. The filling process is useful to hold the thin-walled product during the machining step. The ultrasonic welding process is introduced to make one piece product from two piece parts that are machined by HSM and filling process. The proposed rapid manufacturing (RM) process has been shown that the RM process enables to fabricate the 3D thin-walled products using ABS plastics and aluminum metals from 3D CAD data to functional parts.

A Survey of Particulate Size Distribution in Work Environment (일부 분진 작업장에서의 공기중 분진 입경분포)

  • 김영식;이병인;홍성철
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.2
    • /
    • pp.22-26
    • /
    • 1991
  • Authors investigated the particulate size distribution in work environment of Banwol and Changwon industrial complex. Size distributions of particles exposured to workers in welding and in grinding process were evaluated by ambient cascade impactors. Respirable matter fractions were calculated from the size distribution data by the respirable particle mass of the ACGIH criteria.

  • PDF

Expectation of Bead Shape using Non-linear Multiple Regression and Piecewise Cubic Hermite Interpolation in FCA Fillet Pipe Welding (FCA 필릿 파이프 용접에서 다중 비선형 회귀 모형과 구간적 3차 에르미트 보간법을 통한 비드 형상 예측)

  • Cho, Dae-Won;Na, Suck-Joo;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.42-48
    • /
    • 2009
  • Pipe welding is used in various ranges such as civil engineering and ship building engineering. Until now, many technicians work for pipe welding manually under harmful, dangerous and difficult conditions. So it is necessary to install automation process. For automation pipe welding, relation between welding parameters & bead shape should be considered. Using this relation, bead shape could be expected from welding parameters. FCAW was used in this study. Instead of pipe workpiece, fillet joint plate is used, which were inclined 0,45,90,135,180 degree. By analyzing between welding parameters (current, welding speed, voltage) and bead shape parameters with non-linear multiple regression, bead shape parameters could be expected. Piecewise Cubic Hermite Interpolation was used to expect smooth curved bead shape with bead shape parameters. From these processes, bead shape could be expected from welding parameters.

Trajectory Development of Robotic Arc Welding System for Continuous Welding of Corner Area (모서리 부위 연속 용접을 위한 아크 용접 로봇 시스템의 궤적 개발)

  • 장교근;유범상
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.68-80
    • /
    • 1996
  • When a workpiece is to be arc welded around the outside corner, continuous welding without welding seam in the neighborhood of comer still remains a very difficult technique. Skilled welders weld comers by delicate“hand-eye coordination”while turning the workpiece manually, However, there is not a very clear solution to this problem in robotized arc welding process. In order to solve this problem, the coordination of a robot and a positioner with one or two axes is necessary. This paper presents a method of continuous welding around the corner of workpiece using the coordinated motion of a robot and a positioner. The positioner is either revolute jointed or prismatic jointed. In this paper, a clothoid curve is chosen for welding trajectory. The clothoid curve is excellent in connecting straight and curved weld-lines with good continuity and accommodates various welding conditions. By using this welding trajectory, the deceleration, which leads to widening of the melt and the heat affected zone, at comer area is reduced with strategic rotation of robot torch in coordination with a positioner providing smooth transition of welding torch orientation. Two types of special clothoid curves are developed for different weld slope conditions. These clothoid curves are applied to the case of linear and rotary Positioners at arc welding robot work-cell.

  • PDF

Exposure status of welding fumes for operators of overhead traveling crane in a shipyard (대형조선소 천장크레인 운전원의 용접흄 노출 실태)

  • Lee, Kyeongmin;Kim, Boowook;Kwak, Hyunseok;Ha, Hyunchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.301-311
    • /
    • 2015
  • Objectives: Operators of overhead traveling crane in a ship assembly factory perform work to transmit large vessel blocks to an appropriate working process. Hazardous matters such as metal dusts, carbon monoxide, carbon dioxide, ozone, loud noise and fine particles are generated by variable working activities in the factory. The operators could be exposed to the hazardous matters during the work. In particular, welding fumes comprised of ultra fine particles and heavy metals is extremely hazardous for humans when exposing a pulmonary through respiratory pathway. Occupational lung diseases related to welding fumes are increasingly on an upward tendency. Therefore, the objective of this study is to assess properly unknown occupational exposure to the welding fumes among the operators. Methods: This study intended to clearly determine an equivalence check whether or not chemical constituents and composition of the dusts, which existed in the driver's cab, matched up with generally known welding fumes. Furthermore, computational fluid dynamics program(CFD) was used to identify a ventilation assessment in respect of a contamination distribution of welding fumes in the air. The operators were investigated to assess personal exposure levels of welding fumes and respirable particulate. Results: The dust in an operation room were the same constituents and composition as welding fumes. Welding fumes, which caused by the welding in a floor of the factory, arose with an ascending air current up to a roof and then stayed for a long time. They were considered to be exposed to the welding fumes in the operation room. The personal exposure levels of welding fumes and respirable particulate were 0.159(n=8, range=0.073-0.410) $mg/m^3$ and 0.138(n=8, range=0.087-0.178) $mg/m^3$, respectively. They were lower than a threshold limit value level($5mg/m^3$) of welding fumes. Conclusions: These findings indicate that an occupational exposure to welding fumes can exist among the operators. Consequently, we need to be keeping the operators under a constant assessment in the operator process of overhead traveling crane.

Process Conditions for Low Bonding Strength in Pressure Welding of Cu-Al Plates at Cold and Warm Temperatures (Cu-Al 판재의 냉간 및 온간 압접에서 낮은 접합강도를 갖는 공정 조건에 관한 연구)

  • 심경섭;이용신
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.623-628
    • /
    • 2004
  • This paper is concerned with pressure welding, which has been known as a main bonding mechanism during the cold and warm forming such as clad extrusion or bundle extrusion/drawing. Bonding characteristics between the Cu and Al plates by pressure welding are investigated focusing on the weak bonding. Experiments are performed at the cold and warm temperatures ranging from the room temperature to $200^{\circ}C$. The important factors examined in this work are the welding pressure, pressure holding time, surface roughness, and temperature. A bonding map, which can identify the bonding criterion with a weak bonding strength of IMPa , is proposed in terms of welding pressure and surface roughness fur the cold and warm temperature ranges.

Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint (십자형 필릿 용접부에서의 피로파괴 형상과 특성)

  • Lee, Yong-Bok;Chung, Joon-Ki;Park, Sang-Heup
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.