Welding is one of the most fundamental and necessary work in the industry that demand sophistication of skilled workers. This study is to introduce welding simulator as a training tool, to verify its effectiveness and to measure satisfaction of the trainees. A group of freshman students at a Korea Polytechnics College in their twenties with less experience of welding participated in the study. They were divided into two groups and took a traditional training course (comparison group) and a training course with welding simulator applied reality/haptic technology (experimental group) for same hours respectively. To evaluate training effect, a national certificate test and a survey based on Phillips' ROI (Return on Investment) methodology were conducted by the students and the college respectively. And satisfaction survey among the students based on Kirkpatrick's Four-Level Evaluation Model was also carried out. The results showed that all students in the experimental group passed the national certificate test and the ROI of the experimental group for five years were 110% higher than the comparison group. Furthermore, 25% more students in the experimental group replied "very satisfied" about the overall training course and 75% more students in the same group found that the simulation was very similar to the real welding.
The International System for Education and Qualification of Welding Personnel has been implemented based on the harmonized European System for education and qualification of welding personnel. This paper gives an overview of the International System focusing on the training guidelines and the quality assurance system developed. Systems for harmonization of Certification of Welding Personnel and for supporting companies using welding to implement ISO 3834 have been developed by EWF and are presently being transferred to IIW in line with the EWF/IIW agreement established in 2000.
In this paper, we propose the Tangible Virtual Reality Representation Method to using haptic device and feature to morphology of created bead from Flux Cored Arc Welding. The virtual reality was started to rising for reduce to consumable materials and welding training risk. And, we will expected maximize virtual reality from virtual welding training. In this paper proposed method is get the database to changing the input factor such as work angle, travelling angle, speed, CTWD. And, it is visualization to bead from extract to optimal morphological feature information to using the Neural Network algorithm. The database was building without error to extract data from automatic robot welder. Also, the Neural Network algorithm was set a dataset of the highest accuracy from verification process in many times. The bead was created in virtual reality from extract to morphological feature information. We were implementation to final shape of bead and overlapped in process by time to using bead generation algorithm and calibration algorithm for generate to same bead shape to real database in process of generating bead. The best advantage of virtual welding training, it can be get the many data to training evaluation. In this paper, we were representation bead to similar shape from generated bead to Flux Cored Arc Welding. Therefore, we were reduce the gap to virtual welding training and real welding training. In addition, we were confirmed be able to maximize the performance of education from more effective evaluation system.
In this research paper, suggest method of generate same bead as an actual measurement data in virtual welding conditions, exploit morphology information of the bead that acquired through robot welding. It has many multiple risk factors to Beginners welding training, by we make possible to train welding in virtual reality, we can reduce welding training risk and welding material to exploit bead visualization algorithm that we suggest so it will be expected to achieve educational, environmental and economical effect. The proposed method is acquire data to each case performing robot welding by set the voltage, current, working angle, process angle, speed and arc length of welding condition value. As Welding condition value is most important thing in decide bead form, we would selected one of baseline each item and then acquired metal followed another factors change. Welding type is FCAW, SMAW and TIG. When welding trainee perform the training, it's difficult to save all of changed information into database likewise working angle, process angle, speed and arc length. So not saving data into database are applying the method to infer the form of bead using a neural network algorithm. The way of bead's visualization is applying the spline algorithm. To accurately represent Morphological information of the bead, requires much of morphological information, so it can occur problem to save into database that is why we using the spline algorithm. By applying the spline algorithm, it can make simplified data and generate accurate bead shape. Through the research paper, the shape of bead generated by the virtual reality was able to improve the accuracy when compared using the form of bead generated by the robot welding to using the morphological information of the bead generated through the robot welding. By express the accurate shape of bead and so can reduce the difference of the actual welding training and virtual welding, it was confirmed that it can be performed safety and high effective virtual welding education.
Some confusion in the terminology concerning the weld quality and its assurance seems caused by the different practises currently in use around the world. Qualified welding personnel are not automatically certified personnel. Education and training are the tools to obtain qualification. Flexibility in training and education seems logical and the most cost-effective way to obtain qualified personnel. A third party seems essential for issuing recognised Certificates. Manufacturers of welded products continue to face increased demands and concerns regarding weld quality. The following are the main conditions influencing weld quality: $\bigcirc$ Establishing reliable productions procedures and tests that meet the requirements of established codes and standards. $\bigcirc$ Finding qualified welding personnel capable of reliably carrying out established welding procedures. The issue of hiring and keeping skilled welding personnel has been a crucial consideration for manufacturers worldwide for the past few decades. It will continue to be a concern for decades to come.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.479-481
/
2019
In recent years, training systems in various industrial fields have been made using virtual reality (VR) technology and widely used in education. Virtual reality based training system is safe, there is no waste of material, and there are many advantages to be able to practice anytime and anywhere. For example, virtual reality welding training simulation system is widely used for field worker because it can perform actual joining of steel plate in immersive environment. At this time, realistic representation of the steel plate joint is important to maximize the effectiveness of the training, but existing techniques have limited the natural expression of the effect. In this study, we propose a method of visualizing joint effect based on shader in order to construct welding training system. The results of this study can be applied to the welding training system to improve the weld training effect to provide the user with high-quality visualization.
Dilthey, Ulrich;Mokrov, Oleg;Sudnik, Wladislaw;Kudinov, Roman
Proceedings of the KWS Conference
/
2002.10a
/
pp.82-88
/
2002
Simulation systems allow a close inspection of the relation between welding parameters and the resulting weld seam. These systems are very useful in education of weld staff as well as production and planning. In training the influence of variations of parameters can be investigated without the need for real welding experiments. In the design phase requirements of the welding process can be taken into account without several iteration cycles. By estimating a good parameter set for the given welding task the set up phase for a new production cycle can be reduced
Famous artificial neural network (ANN) is applied to predict proper process window of arc welding. Target weldment is variously combined lap joint fillet welding of automotive steel plates. ANN's system variable such as number of hidden layers, perceptrons and transfer function are carefully selected through case by case test. Input variables are welding condition and steel plate combination, for example, welding machine type, shield gas composition, current, speed and strength, thickness of base material. The number of each input variable referred in welding experiment is counted and provided to make it possible to presume the qualitative precision and limit of prediction. One of experimental process windows is excluded for predictability estimation and the rest are applied for neural network training. As expected from basic ANN theory, experimental condition composed of frequently referred input variables showed relatively more precise prediction while rarely referred set showed poorer result. As conclusion, application of ANN to arc welding process window derivation showed comparatively practical feasibility while it still needs more training for higher precision.
A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.18
no.11
/
pp.47-56
/
2019
A deep neural network (DNN) model was proposed to predict the upset in the inertia friction welding process using a database comprising results from a series of FEM analyses. For the database, the upset length, upset beginning time, and upset completion time were extracted from the results of the FEM analyses obtained with various of axial pressure and initial rotational speed. A total of 35 training sets were constructed to train the proposed DNN with 4 hidden layers and 512 neurons in each layer, which can relate the input parameters to the welding results. The mean of the summation of squared error between the predicted results and the true results can be constrained to within 1.0e-4 after the training. Further, the network model was tested with another 10 sets of welding input parameters and results for comparison with FEM. The test showed that the relative error of DNN was within 2.8% for the prediction of upset. The results of DNN application revealed that the model could effectively provide welding results with respect to the exactness and cost for each combination of the welding input parameters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.