• Title/Summary/Keyword: Welding thermal cycle

Search Result 79, Processing Time 0.025 seconds

Thermal Fatigue Life of Underfilled $\mu\textrm$ BGA Solder Joint

  • Kim, H.H.;Han, S.W.;Kim, H.I.;Choi, M.;Shin, Y.E.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.61-66
    • /
    • 2004
  • In this paper, the effect of underfill packages was investigated by numerical approach and experimental test. Reliability improvement was the main issue in the package technology. BGA, CSP and small-sized packages, have problems due to concentration of the stress in solder joints. One of the latest technologies to overcome is underfill encapsulant. Mainly, it is noticed the effect of the underfill in the packages. The predicted thermal fatigue lifes are performed by Coffin-Manson's equation with ANSYS (v.5.62). Also, thermal cycle test during from 218K to 423K was included. Finally we could find that underfill greatly reduce the concentration stress in solder joint, thus the fatigue life was improved than without underfill.

  • PDF

Prediction of Thermal Fatigue Life on $\mu$BGA Solder Joint Using Sn-3.5Ag, Sn-3.5Ag-0.7Cu, and Sn-3.5Ag-3.0In-0.5Bi Solder Alloys (Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-3.0In-0.5Bi Solder를 이용한 $\mu$BGA Solder접합부의 열피로 수명예측)

  • 김연성;김형일;김종민;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • This paper describes the numerical prediction of the thermal fatigue life of a $\mu$BGA(Micro Ball Grid Array) solder joint. Finite element analysis(FEA) was employed to simulate thermal cycling loading for solder joint reliability. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. The results show that Sn-3.5mass%Ag solder had the longest thermal fatigue life in low cycle fatigue. Also a practical correlation for the prediction of the thermal fatigue life was suggested by using the dimensionless variable ${\gamma}$, which was possible to use several lead free solder alloys for prediction of thermal fatigue life. Furthermore, when the contact angle of the ball and chip has 50 degrees, solder joint has longest fatigue life.

Temperature analysis of thick plate during welding (1) (후판 용접부 온도 분포 해석 1)

  • Choi, K.;Chang, R.W.;Eom, G.W.
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.53-59
    • /
    • 1990
  • Temperature distribution of thick plate during welding was investigated. Applied weldng process was shielded metal arc welding which was known as one of the most utilized processes in fabrication fields. Heating and cooling cycles were recorded by imploying high fidelity recorded and K-type thermocouple of 0.3mm in diameter. Both analytical and numerical calculations were preformed so as to verify the thermal cycle measurement. Results showed that the temperature of a welded points at given time could be predicted by the theoretical calculations. It was considered that methods could be applied to real structural components with slight modification.

  • PDF

A Study on the Prediction Modeling of Phase Transformation in the CGHAZ of Structural Steel Weld (구조용강 용접부 CGHAZ의 상변태 예측 Modeling에 관한 연구)

  • 조일영;이경종;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.74-84
    • /
    • 1998
  • The microstructures of the HAZ (Heat Affected Zone) are generally different from the base metal due to rapid thermal cycle during welding process. Particuraly, CGHAZ (Coarsened Grain Heat Affected Zone) near the fusion line is the most concerned region in which many metallurgical and mechanical discontinuities have been normally generated. A computer program by the numerical formularization of phase transformation during cooling with different rates was developed to generate the CCT diagram, and to predict microstructural (phase) changes in the CGHAZ. In order to verify simulated results, isothermal and continuous cooling transformation experiments were conducted. The simulated and experimental results showed that the developed computer model could successfully predict the room temperature microstructural changes (changes in volume fraction of phases) under various welding conditions (heat input & cooling rate $(Δt_{8/5})$).

  • PDF

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 2nd Report: Corrosion Characteristics (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 -제2보: 부식특성)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Kim, Sung-Kwang;Son, Chang-Seok;Nam, Ki-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.33-38
    • /
    • 2007
  • The welding methods have been applied in the most structural products from multi-field of automobile, ship construction and construction, and so on. The structure steel must have enough strength of structure. In this study, SS400 steel and STS304 steel were used to estimate the corrosion characteristics of the weld thermal cycle simulated HAZ. To evaluate the corrosion characteristics, also, the materials with two conditions were used in 3.5% NaCl. The one is to the drawing with diameter of ${\Phi}10$ and the other is to the residual stress removal treatment. The electrochemical polarization test and immersion test were carried out. From test results, corrosion potential, corrosion current density, weight loss ratio and corrosion rate were measured. In the kinds of SS400 steels, corrosion potential of weld thermal cycle simulated specimens after the heat treatment showed somewhat the direction of noble potential. And in the base metal to be drawing weight loss ratio and corrosion rate occurred higher than the other kinds. In the kinds of STS304 steels, the result of base metal to be drawing was similar to results of SS400 steels, too. Two kinds of $750^{\circ}C$ and $1300^{\circ}C$ of weld thermal cycle simulation after the heat treatment were rather higher than the other kinds in weight loss ratio and corrosion rate.

Effects of PWHT on the toughness of weld HAZ in Cu-bearing HSLA-100 steel (Cu를 함유한 HSLA-100강 용접 열 영향부의 인성에 미치는 PWHT의 영향)

  • 박태원;심인옥;김영우;강정윤
    • Proceedings of the KWS Conference
    • /
    • 1995.04a
    • /
    • pp.91-93
    • /
    • 1995
  • A study was made to examine the effects of post-weld heat treatment (PWHT) on the toughness and microstructures in the weld heat-affacted zone(HAZ) of Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulate the weld HAZ. The behavior of Cu-precipitates in HAZ is similar to that in base plate. PWHT at 55$0^{\circ}C$ shows highest hardness and lowest toughness, whereas PWHT at $650^{\circ}C$ shows reasonable toughness. Cu precipitated during agcing for increasing the strength of base metal is dissolved during single thermal cycle to 135$0^{\circ}C$ and is precipitated little on cooling and heating during subsequent weld thermal cycle. It precipitates by introducing PWHT.

  • PDF

Reliability of Various Underfills on BGA package (BGA 패키지에서의 다양한 언더필의 신뢰성 평가)

  • No, Bo-In;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.31-33
    • /
    • 2005
  • In this study, the interfacial reactions and electrical properties of the Sn-35(wt%)Pb-2(wt%)Ag/Cu BGA solder joints after the thermal shock test were investigated with three different kinds of the underfill used commercially. The microstructural evolutions of the solder joints were observed using a scanning electron microscopy (SEM) and the electrical resistance of the solder joints were evaluated with the numbers of thermal shock cycle using the four-prove method. The increase in the $Cu_{6}Sn_{5}$ IMC thickness led to the increase in the electrical resistance with increasing the numbers of the thermal shock cycle. The increase in the electrical resistance of the BGA packages with the underfill was smaller than that without the underfill. The silica contained underfill led to the higher electrical resistance.

  • PDF

A weld-distortion analysis method of the shell structures using ultra structural FE model (초대형 구조모델을 활용한 쉘구조물의 용접변형 해석)

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.

A Study of the High Reliability in Plastic BGA Solder Joints (플라스틱 BGA 솔더접합부의 고신뢰성에 관한 연구)

  • Kim, Kyung-Seob;Shin, Young-Eui;Lee, Hyuk
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.90-95
    • /
    • 1999
  • The increase in high speed, multi-function and high I/O pin semiconductor devices highly demands high pin count, very thin, and high density packages. BGA is one of the solutions, but the package has demerits in package reliability, surface mounting problems due to the PCB warpage and solder joint crack related with TCE mismatch between the materials. On this study to verify the thermal fatigue lifetime of the solder joint FEM and experiments were performed after surface mounting BGA with different solder composition and reliability conditions. FEM showed optimum composition of Ag3.2-Sn96.5 and under the composition minimum creep deformation of the solder joint was calculated, and the thermal fatigue lifetime was improved. In view of temperature cycle condition, the conditions of $-65^{\circ}C$to $150^{\circ}C$ showed minimum lifetime and t was 1/3 of $0^{\circ}C$ to $125^{\circ}C$ condition. Test board was prepared and solder joint crack was verified. Until 1000cycle on soder joint crack was observed.

  • PDF