• 제목/요약/키워드: Welding structure

검색결과 864건 처리시간 0.026초

FRICTION STIR WELDING OF MAGNESIUM ALLOYS

  • Kazuhiro Nakata;Kim, Young-Gon;Masao Ushio
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.511-515
    • /
    • 2002
  • Extruded and cast plates of AZ type magnesium alloys were successfully joined by friction stir welding (FSW). Effect of FSW conditions on the formation of the defect was revealed in relation to tool rotation speed and specimen travel speed. Magnesium alloy with higher aluminum content became difficult to be joined and the optimum condition without defect was restricted into narrow condition range. The structure of the stirred zone was a fine-grained recrystallized structure even in the case of cast AZ91D. FSW joint had better mechanical properties than those of GTA welded joint. Especially the toughness of the stirred zone increased more than that of the base metal.

  • PDF

FPSO선 Moon Pool구조의 용접변형 해석에 관한 연구 (A Study on the Analysis of Welding Distortion for Moon Pool Structure of FPSO Vessel)

  • 김상일
    • 한국해양공학회지
    • /
    • 제17권3호
    • /
    • pp.27-32
    • /
    • 2003
  • The welding distortion of a hull structure in the shipbuilding industry is inevitable at each assembly stage. The geometric inaccuracy caused by the distortion tends to preclude the introduction of automation and mechanization. Thus, additional man-hours are needed for the adjusting work in the assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method that can explicitly account for the influence of various factors on the welding distortion. In order to minimize the weld-induced residual deformation, this paper proposes the optimum welding sequence as a method for distortion control. The validity of this method has been substantiated by a number of numerical simulations and experiments.

Finite Element Analysis and Measurement on the Release of Residual Stress and Non-linear Behavior in Weldment by Mechanical Loading(I) -Finite Element Analysis-

  • Jang, K.B.;Kim, J.H.;Cho, S.M.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.29-32
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non- coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF

내부 압력을 받는 구조물의 용접 부 설계 검증 (Weld Zone Design Verification of Structure which is Receiving Internal Pressure)

  • 박정선;임종빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1425-1429
    • /
    • 2003
  • In this study, when structure which is combined by welding is receiving internal pressure, finite element analysis to confirm stability of structure and reliability of welding part is achieved. And we analyze the results. Also, if stability of the structure and reliability of the welding part are not defined, research that look for method to change design to receive stability and reliability is achieved.

  • PDF

The Effect of Welding Residual Stress on Whole Structure with T-Joint RHS

  • Rajesh S. R.;Bang H. S.;Kim H.
    • International Journal of Korean Welding Society
    • /
    • 제5권1호
    • /
    • pp.60-65
    • /
    • 2005
  • In the field of welding the mechanical behavior of a welded structure under consideration may be predicted via heat transfer and welding residual stress analysis. Usually such numerical analyses are limited to small regular mesh models or test specimens. Nevertheless, there is very few strength assessment of the whole structure that includes the effect of welded residual stress. The present work is based on the specialized finite element codes for the calculation of nonlinear heat transfer details and residual stress including the external load on the welded RHS (Rectangular Hollow Section) T-joint connections of the whole structure. First the thermal history of the combined fillet and butt-welded T-joint equal width cold-formed RHS are calculated using nonlinear finite element analysis (FEA) considering the quarter model of the joint. Then using this thermal history the residual stress around the joints has been evaluated. To validity the FEA result, the calculated residual stresses were compared with the available experimental results. The residual stress obtained from the quarter model is mapped to the full model and then to the whole structure model using FEM codes. The results from the FEM codes were exported to the commercial package for visualization and further analysis applying loads and boundary conditions on the whole structure. The residual stress redistribution along with the external applied load is examined computationally.

  • PDF

國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性 (Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates)

  • 오세규;남기우
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

점용접의 간격 변화에 의한 구조 강성 영향 평가 연구 (A Study of the Effects on the Structural Strength by Change of Spot Welding Pitch)

  • 홍민성;김종현
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.511-520
    • /
    • 2010
  • In general, spot welding is used at no welding rod or flux for the process, low welding point temperature compared to arc welding, short heating time, less damage to the parent material, and low deformation and residual stress, relatively. Also, because of the pressurization effect, better mechanical qualities of the welding parts are obtained. Therefore, in various fields of industry its rapid operation speed can make mass production possible such as motor industry. In FEM analysis for the spot welding process, it is effective to use simple modeling rather than complicated one because of its numerous number of spots and reduction of analysis time. Therefore, this study provides with not only simplification of modeling analysis by using beam component composition of structure without re-compositing the spot welding point mesh but also modeling analysis of which property of fracture strength is reflected. In addition complete spot welding model is examined at rectangular post shape (hat shape) by impact test, compared the results, and verified its validity. As a result, it is possible to optimize the welding position and to recognize the strength of structure and the proposed equal distance model shows the effect of welding point reduction and improvement of stiffness.

FPSO Moon Pool 구조의 용접변형과 잔류응력에 관한 연구 (A Study on the Weld-Induced Deformation and Residual Stress Analysis at FPSO Moon Pool Structure)

  • 한성우;이주성;김상일
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.473-478
    • /
    • 2011
  • Welding process generates distortion and residual stress in the weldment due to rapid heating and cooling. Welding distortion and residual stress in the welded structure result in many troubles such as dimensional inaccuracies in assembling and safety problem during service. The accurate prediction of welding residual stress is thus very important to improve the quality of weldment and find the way to reduce itself. This paper presents the simulation of welding-induced residual stress analysis to examine the cause of cracking in the SUS-overlay welding specimen at FPSO Moon Pool structure.