• 제목/요약/키워드: Welding residual stresses

검색결과 256건 처리시간 0.027초

유한요소법에 의한 PREFLEX BEAM의 용접열분포 특성에 관한 연구 (The Study on the Numerical Analysis of Welding Heat Distribution of Preflex Beam)

  • 방한서;주성민;김규훈;박현후;이형훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.329-334
    • /
    • 2002
  • Preflex beam is a method of construction to hold the Pre-compressive stresses over the concrete pier by the Preflexion load. During the fabrication of the girder, welding causes the welding residual stresses. The welding residual stresses must be relieved to generate the accurate compressive pre-stresses that is designed. On this study, to find out the thermal distribution characteristics on the girder by welding, both the three-dimensional finite element analysis and the two-dimensional finite element analysis in a quasi-steady state is carried out. After comparing with each result between the three-dimensional analysis and the two-dimensional analysis, finite element analysis is carried out against the actual girder and analyze welding thermal distribution characteristic over the preflex beam and obtain the input data for the analysis of the welding residual stresses.

  • PDF

EFFECT OF WELDING SEQUENCE ON THE RESIDUAL STRESSES OF PLATE WITH LONGITUDINAL STIFFENERS

  • Kim, Namin;Lee, Jeongsoo;Woohyeon Choe
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.657-660
    • /
    • 2002
  • In this paper, a study on the residual stress of plate with longitudinal stiffeners is explained in terms of the welding sequences. In order to verify the results of numerical analysis, the hole drilling method (HDM) is performed, to measuring the residual stresses of the test plates in $CO_2$ Flux Cored Arc Welding (FCAW) under various welding conditions. The non-linear transient analysis technique for the numerical analysis in a large and complicate structure is considered. The residual stress of plate in consideration of the welding sequences and directions is evaluated by some numerical simulations and also by experiments. Comparison of numerical analysis results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

Numerical Analysis of Welding Residual Stress Using Heat Source Models for the Multi-Pass Weldment

  • Bae, Dong-Ho;Kim, Chul-Han;Cho, Seon-Young;Hong, Jung-Kyun;Tsai, Chon-Liang
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1054-1064
    • /
    • 2002
  • Numerical prediction of welding-induced residual stresses using the finite element method has been a common practice in the development or refinement of welded product designs. Various researchers have studied several thermal models associated with the welding process. Among these thermal models, ramp heat input and double-ellipsoid moving source have been investigated. These heat-source models predict the temperature fields and history with or without accuracy. However, these models can predict the thermal characteristics of the welding process that influence the formation of the inherent plastic strains, which ultimately determines the final state of residual stresses in the weldment. The magnitude and distribution of residual stresses are compared. Although the two models predict similar magnitude of the longitudinal stress, the double-ellipsoid moving source model predicts wider tensile stress zones than the other one. And, both the ramp heating and moving source models predict the stress results in reasonable agreement with the experimental data.

피로하중하 용접잔류응력 이완 추정모델 (Prediction Model for Relaxation of Welding Residual Stress under Fatigue Loads)

  • 한승호;신병천
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.84-90
    • /
    • 2002
  • The strength and the life of welded components are affected extensively by the residual stresses distributed around their weldments not only under static loads, but also fatigue loads. The residual stress can be superimposed with externally applied loads, so that unexpected deformations and failures of members will be occurred. These residual stresses are not kept constant, but relaxed or redistributed during in service. Under static loads the relaxation takes place when the external stress superimposed with the residual stress exceeds locally the yield stress of material used. It is shown that under fatigue loads the residual stress is considerably relieved by the first or flew cycle loading, and then gradually relaxed with increasing loading cycles. In this study the phenomenon and mechanism of the stress relaxation by mechanical means were investigated and a model to predict quantitatively the residual stress relaxation for the case of static and fatigue loading condition was proposed.

극후판 Box Column 코너이음부의 용접잔류응력 및 Groove형상 특성에 관한 연구 (A Study on the Characteristics of Welding Residual Stresses and Groove Sja[e pf Cprmer Joint in Box Column with Ultra Thick Plate)

  • 방한서;안규백;김종명;석한길;장웅성
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.97-103
    • /
    • 1999
  • Ships, structures on the ocean, bridges, and other structures tend to be large by the development of industry. These ultra thick plate were welded with large heat input, which causes welding stresses, deformation and buckling, so it has to be considered the weld design, safety, reliability. The welded residual stresses were produced and redistributed due to the effect of large heat input. The mechanical phenomenon has not been surely identified yet. In spite of the lack of the study on the box column, there are various types of steel frame such as I type, H type, + type and $\bigcirc$ type, used in high story building. In this study, we performed computer simulation with two dimensional heat conduction and plane deformation thermal elasto-plastic finite element computer program as changing the plate thickness to 100mm, 150mm and groove angle to $60^{\circ}C$, $45^{\circ}C$, $30^{\circ}C$ of corner joint in box column. And then, to identify mechanical phenomenon such as the phenomenon of thermal distribution, welding residual stresses and deformation and to decide optimum groove angle and welding condition. The main conclusion can be summarized as follows: 1) Since the groove angle has became cooling down rapidly due to its smaller value, the temperature slope was steeped somewhat. 2) The tensile stress within the welding direction stresses was somewhat decreased at the weld metal and HAZ, increasing of the groove angle. 3) The local stress concentration of the groove angle $60^{\circ}C$ was appeared smaller than groove angle $30^{\circ}$.

  • PDF

중성자 회절법에 의한 316L 스테인리스강 배관 다층용접부의 잔류응력 해석 (Analysis of Residual Stresses for the Multipass Welds of 316L Stainless Steel Pipe by Neutron Diffraction Method)

  • 김석훈;이재한
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.64-70
    • /
    • 2003
  • Multipass welds of the 316L stainless steel have been widely employed in the pipes of Liquid Metal Reactor. Owing to localized heating and subsequent rapid cooling by the welding process, the residual stress arises in the weld of the pipe. In this study, the residual stresses in the 316L stainless steel pipe welds were calculated by the finite element method using ANSYS code. Also, the residual stresses both on the surface and in the interior of the thickness were measured by HRPD(High Resolution Powder Diffractometer) instrumented in HANARO Reactor. The experimental data and the calculated results were compared and the characteristics of the distribution of the residual stress discussed.

유한요소법을 이용한 용접 잔류응력과 열처리 해석 (Analysis of Welding Residual Stresses and Heat Treatment used by Finete Element Method)

  • 이봉열;조종래;문영훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.334-339
    • /
    • 2003
  • The welding residual stress has on important effect on welding deformation, fatigue fracture, buckling strength, brittle fracture, etc. For the purpose of relaxation of welding residual stress, post welding heat treatment is widely used. In this paper, residual stresses were calculated by two dimensional thermal elasto-plastic analysis using finite element method. Heat transfer analysis are performed by transient analysis. Also structure analysis are carried out by of thermal-mechanical coupled analysis. Numerical analysis are used by ANSYS 5.7.

  • PDF

圓筒管의 圓周熔接時 發生되는 殘留應力에 관한 實驗的 硏究 (The Eexperimental Studies on Residual Stresses due to Circumferential Welds in thin Steel Cylinder)

  • 엄동석;류기열
    • Journal of Welding and Joining
    • /
    • 제15권2호
    • /
    • pp.81-88
    • /
    • 1997
  • The residual stresses produced by a circumferential weld between axisymmetric cylinders are one of the most important problems concerning buckling strength, fatigue strength, stress corrosion cracking in shell structures, and arc quite different from those due to a butt weld between flat plates. This paper presents experimental studies on weld cylinder models of various heat inputs and thin cylinder diameters by blind hole drilling method. As a result, it is certified that weld residual stress (axial stress and hoop stress) is larger, as heat input and shell cylinder diameter are larger, and that experimental results show good agreement with the result of preceding researchers.

  • PDF

레이져 용접된 자동차용 판재의 잔류응력분포 (Residual Stress Distribution of the Laser Welded Automotive Steel Sheets)

  • 윤선진;김재도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.163-168
    • /
    • 1994
  • Zinc coated steel sheets have been widely used in automotive industry. High power laser welding has been used as an excellent welding means for thin sheets. The welding residual stress, which was brought in laser welding, causes making weak the mechanical strength. The purpose of this study is to get the residual stress distribution in various laser welding condition by FEM and verify the results by X-Ray diffraction. Welding residual stresses have been calculated by thermal elasto-plastic analysis using finite element method. Form the results, it can be known that the laser welding condition affects to distribution of the residual stress.

  • PDF

전산용접역학의 최근 동향 (Recent Development in Computational Welding Mechanics)

  • 임세영;한유성;이계형;한명수;최강혁
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.87-91
    • /
    • 2009
  • Welding is one of the most important joining processes and the effect of welding residual stresses in the structure has a great deal of influence on its quality. In this paper, recent development in computational welding mechanics, particularly calculation of welding residual stresses, is introduced. The hypoelastic formulation of finite element analysis for thermoelastic-plastic deformation is applied to welding processes to find residual deformations and stresses. Leblond's phase evolution equation coupled with the energy equation is employed to calculate the phase volume fraction; this plays an important role as a kinetics parameter affecting phase fraction effects in the mechanical constitutive equation of welded materials. Furthermore, transformation plasticity is taken into account for an accurate evaluation of stress. The influence of the phase transformation and the transformation plasticity on residual stress is investigated by means of numerical analyses using metallurgical parameters in Leblond's phase evolution equation that are adjusted with respect to various cooling rates in a CCT-diagram. Coding implementation is conducted by way of the ABAQUS user subroutines, UMAT.

  • PDF