• Title/Summary/Keyword: Welding research

Search Result 1,319, Processing Time 0.029 seconds

On the Weld-Induced Deformation Control of Ship's Thin Plate Block (I) (선체 박판구조의 용접변형 제어에 관한 연구(I))

  • Lee, Joo-Sung;Kim, Cheul-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.496-503
    • /
    • 2007
  • Although weld-induced deformation is inevitable in shipbuilding, it is important to reduce it as low as possible during fabrication for a more efficient production of ships' blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the transverse and longitudinal deformation. in order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. Numerical simulation has been also carried out to compare the weld-induced deformation and residual stress. From the present study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.

Simulation of Plate Deformation due to Triangle Heating Using Inherent Strain Method (고유변형도법을 이용한 삼각가열에 의한 판 변형의 시뮬레이션)

  • Jang, Chang-Doo;Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.703-709
    • /
    • 2008
  • In the shipyard, line heating and triangle heating are two major processes for forming curved plates in various shapes. While there have been many studies on line heating, triangle heating has been rarely studied due to its complicated heating process with irregular multi-heating paths and highly concentrated heat input. As the triangle heating process is one of the most labor-consuming jobs in shipyards, it is essential to study the automation as well as improvement of triangle heating process in order to increase hull forming productivity. In this study, a pioneering attempt to simulate triangle heating was made. A circular disk-spring model was proposed for elasto-plastic analysis procedure of triangle heating and the inherent strain method was also used to analyze the deformation of plates. Simulation results were compared with those of experiments and showed good agreement. It is shown that the present approach including analysis model used in this study is effective to simulate the triangle heating for plate forming process in shipbuilding.

Implant-supported overdenture with prefabricated bar attachment system in mandibular edentulous patient

  • Ha, Seung-Ryong;Kim, Sung-Hun;Song, Seung-Il;Hong, Seong-Tae;Kim, Gy-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.254-258
    • /
    • 2012
  • Implant-supported overdenture is a reliable treatment option for the patients with edentulous mandible when they have difficulty in using complete dentures. Several options have been used for implant-supported overdenture attachments. Among these, bar attachment system has greater retention and better maintainability than others. SFI-Bar$^{(R)}$ is prefabricated and can be adjustable at chairside. Therefore, laboratory procedures such as soldering and welding are unnecessary, which leads to fewer errors and lower costs. A 67-year-old female patient presented, complaining of mobility of lower anterior teeth with old denture. She had been wearing complete denture in the maxilla and removable partial denture in the mandible with severe bone loss. After extracting the teeth, two implants were placed in front of mental foramen, and SFI-Bar$^{(R)}$ was connected. A tube bar was seated to two adapters through large ball joints and fixation screws, connecting each implant. The length of the tube bar was adjusted according to inter-implant distance. Then, a female part was attached to the bar beneath the new denture. This clinical report describes two-implant-supported overdenture using the SFI-Bar$^{(R)}$ system in a mandibular edentulous patient.

A study on the simulation of water cooling process for the prediction of plate deformation due to line heating

  • Nomoto, Toshiharu;Jang, Chang-Doo;Ha, Yun-Sok;Lee, Hae-Woo;Ko, Dae-Eun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • In a line heating process for hull forming, the phase of the steel transforms from austenite to martensite, bainite, ferrite, or pearlite depending on the actual speed of cooling following line heating. In order to simulate the water cooling process widely used in shipyards, a heat transfer analysis on the effects of impinging water jet, film boiling, and radiation was performed. From the above simulation it was possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision. Compared to the line heating experimental results, the simulated water cooling process method was verified to improve the predictability of the plate deformation due to line heating.

The Development of Al Casting Tank for 145kV 40kA GCB (145kV 40kA GCB용 Al 알루미늄 주물탱크 개발)

  • Han Dong Young;Cho Nak Keun;Lee Keun Ho;Kim Jung Bae;Song Won Pyo;Ko Hee Suk;Choi In Hyuk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1028-1030
    • /
    • 2004
  • 최근 세계시장이 Al-Casting 외함(알루미늄 주물탱크)을 적용한 GCB(Gas Circuit Breaker) 및 GIS(Gas Insulated Switchgear)를 선호하고 있으며, 이는 철재 외함에 비해 많은 이점을 갖고 있기 때문이다. 알루미늄 외함은 철재 용접형 제품에 비해 중량이 가벼워 취급 및 운반이 용이할 뿐 아니라 장기 사용 시에도 발청의 우려가 없으며, 2층 이상의 건물에 신설 또는 증설시 건물의 중량 제한에 따른 제약 조건에서 훨씬 자유롭다. 또한 Casting은 Welding형에 비해 분기부 전계 강도가 유리하고, 알루미늄은 철에 비해 열발생량이 적어 외함크기 축소가 가능하다. 또한 제작공정이 철재 용접외함에 비해 단순하고 대량생산에 유리하다. 이로 인해 외함이 표준화되고 GIS 모듈화가 완성되면 기종별 Series화하여 대량생산 체제 구축에 유리하게 된다. 점진적인 인건비 상승으로 용접형 외함의 단가상승이 예상되며, GCB의 경우 Al Casting형이 원가면에서도 유리하다. 이에 당사 GCB 및 GIS 제품 경쟁력 향상 및 수출시장 적극공략을 목적으로 현행 GCB 및 GIS 철재 용접형외함을 알루미늄 Casting 외함으로의 변경, 개발을 실시하였다. 본 연구에서는 Al Casting 외함을 개발하기 위한 일련의 과정에 대해 소개한다.

  • PDF

The Recycling Technology for Aged Aluminum Wire in Overhead Conductor (폐가공송전선 Al선재 재활용 기술개발)

  • Kim, Shang-Shu;Ku, Jae-Kwan;Lee, Young-Ho;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.555-562
    • /
    • 2013
  • The new recycling technology for aged aluminum wires in overhead conductor has been carried out. The authors are attempting to develop remanufacturing method for them for more effective way of recycling in stead of its conventional remelting process. The new recycling technology for aged aluminum wire in overhead conductor was composed of four steps in different develop process, destranding process for conductor, surface cleaning process, welding process and drawing process for aluminum wire. This paper investigates the properties during recycle process of aged aluminum wire. The results of microscopic analysis and mechanical properties were discussed to underscore recycling aluminum wire. Various graphs are presented accompanied by discussion about their relevance on the process. In conclusion, we confirmed the possibility of remanufacturing technique by using new process.

Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Jong-Sung;Kim, Maan-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1412-1422
    • /
    • 2016
  • Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

A Study on the Mechanical Properties of Weldments for AISI 409L Ferritic Stainless Steel (자동차 배기계용 AISI 409L 페라이트계 스테인리스강 용접부 물성에 관한 연구)

  • Lee, Sang Hwa;Shin, Yong Taek;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • In this study, we prepared a sample of AISI 409L weld metals using automotive exhaust manifolds and evaluated their corrosion properties by conducting an anodic polarization test after 10 minute of heat treatment at $900^{\circ}C$. The specimens of AISI 409L transformed fully ferrite. Weld metal was refined more than base metal. Specimen of heat treatment at $900^{\circ}C$ and as weld specimen was formed precipitation. However heat treatment specimen was bulkly formed and coarser than the as weld specimen. The strength measured by 10 Hv highly at heat treatment specimens in comparison with as weld. The increase in strength is attributed to the precipitation of Ti. The result of heat treatment suggest that there was a decrease of current density and high corrosion potential. Following heat treatment process produced Ti precipitation and for this reason, it can restrain Cr-carbide so that steel will have more corrosion resistance.

A Study of 3D Design Data Extraction for Thermal Forming Information

  • Kim, Jung;Park, Jung-Seo;Jo, Ye-Hyan;Shin, Jong-Gye;Kim, Won-Don;Ko, Kwang-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.1-13
    • /
    • 2008
  • In shipbuilding, diverse manufacturing techniques for automation have been developed and used in practice. Among them, however, the hull forming automation is the one that has not been of major concern compared with others such as welding and cutting. The basis of the development of this process is to find out how to extract thermal forming information. There exist various methods to obtain such information and the 3D design shape that needs to be formed should be extracted first for getting the necessary thermal forming information. Except well-established shipyards which operate 3D design systems, most of the shipyards only rely on 2.5D design systems and do not have an easy way to obtain 3D surface design data. So in this study, various shipbuilding design systems used by shipyards are investigated and a 3D design surface data extraction method is proposed from those design systems. Then an example is presented to show the extraction of real 3D surface data using the proposed method and computation of thermal forming information using the data.

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.