• Title/Summary/Keyword: Welding rate

Search Result 589, Processing Time 0.02 seconds

Relationship between Spatter Generation and Waveform Factors in Transitional Condition of $CO_2$ Welding ($CO_2$ 용접의 천이이행 조건에서 스패터 발생과 파형인자와의 관계)

  • 강봉용;이창한;김희진;장희석
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • $CO_2$ gas shielded arc welding has been characterized with its harsh arc compared to Ar-based shielding gases and with its high level of spattere specially in welding current range of 250~300 amperes. In this range of welding current, the metal transfer mode showed to be changed from short circuit to globular with the increase of welding voltage resulting in so-called the transitional mode in which both modes of transfer appeared together. To characterize the transitional mode, the short circuit events were divided into two groups, i.e. normal short circuit (N.S.C) which has short circuit time $(t_s)$ over 2msec and instantaneous short circuit (I.S.C) of $t_s$$\leq$2msec. The experimental results showed that the number of N.S.C decreased almost linearly with the increase of welding voltage and appeared to be not related with spatter generation rate. However I.S.C became to be pronounced in the transitional condition and its number reached the maximum value at around 29.0 volts. Considering the relation with the spatter generation rate, it was found that the number of I.S.C had a very strong correlation with the spatter generation rate of the transitional condition. It was further demonstrated that spatter generation rate decreased quite linearly with the decrease of I.S.C frequency. It implies that I.S.C is the most important waveform factor controlling the spatter generation of the transitional mode, i.e. in the middle range of welding current. Based on these results, It was discussed that in the transitional mode the basic concept of waveform control for suppressing spatter generation would be different from the one applied for typical short circuit transfer mode of low welding current.

  • PDF

Al5052 Welding by $CO_2$ Laser using Filler Wire (용접 와이어를 사용한 Al5052 $CO_2$ 레이저 용접)

  • 박기영;이경돈;김주관
    • Laser Solutions
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Compared to conventional welding process, laser welding does not use additional filler wire generally. However, if laser welding uses the filler wire, the applicability of the method can be broaden. When laser welding uses the filler wire, it is possible to enhance gap bridging ability and to prevent cracking in weld pool by metallurgical control. In this study, we had optimal condition and experimented gap bridging capability for butt welding with 2㎜ Al5052 alloys using the filler wire feeder. As the experimental parameters, wire feed rate and wire diameter are considered and then the performance of wire feed is evaluated under various filler wire welding conditions.

  • PDF

A study on the Optimum Conditions of Nd:YAG LBW for Zircaloy-4 End Cap Closure By Optical Fiber Transmission (광섬유전송에 의한 Zircaloy-4 봉단마개밀봉의 Nd:YAG LBW의 최적조건에 관한 연구)

  • 김수성;김웅기;이영호
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.85-95
    • /
    • 1997
  • This study is to investigate the optimum conditions of Nd:YAG laser beam welding for Zircaloy-4 end cap closure by optical fiber transmission. Laser welding parameters which affect the penetration depth and bead width were experimentally examined using the various beam radius by the beam quality analyzer, joint geometries of end cap and the laser parameters which mean pulse width, repetition rate and pulse energy. Also, an optimum welding speed and the effect of assistant gas with varying the flow rate of He were investigated. We found that the laser average power for the end cap welding will be 230W and rotation speed must not exceed 8 RPM, the best position of focus using optical fiber with 600.mu.m will be 2 to 3mm below the surface of the material.

  • PDF

The effect of the excessive loading and welding anisotropy on the fatigue crack propagation behavior of TMCP steel for offshore structure (해양구조물용 TMCP강의 피로균열진전거동에 미치는 용접이방성 및 과대하중의 영향)

  • ;;三澤啓志
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.82-88
    • /
    • 2000
  • The effect of the welding for the offshore structure in the TMCP steel on the fatigue crack propagation rate and crack opening-and-closure behavior was examined. The welding anisotropy of the TMCP steel and crack propagation characteristics of the excessive loading were reviewed. (1) It seemed that a heat which was generated by the welding made a compressive residual stress over the base metal, so fatigue crack propagation rate was placed lower than in case of the base metal. (20 In the base metal, an effect of the anisotropy which has an effect of fatigue crack propagation rate of the excessive load and the constant amplitude laos was not found but in the welding material case, fatigue crack propagation rate of the excessive load in the specimen of the width direction was located in the retard side as compared with a specimen rolling direction. (3) A crack opening ratio of the used TMCP stel in this study was not changed after excessive loading but a retard phenomenon of crack propagation was observed. Consequently, it was thought that all of the retard phenomenon of crack propagation did not only a cause of the crack opening-and-closure phenomenon.

  • PDF

A Study on the Effect of Welding Conditions on Fume Generation Rate in $CO_2$ Flux Cored Arc Welding ($CO_2$ FCAW에서 용접조건이 Fume발생량에 미치는 영향에 관한 연구)

  • 채현병;김정한;김희남
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.87-95
    • /
    • 1998
  • The use of flux cored arc welding(FCAW) process has grown dramatically since it has been developed because of the remarkable operating characteristics and the resulting weld properties. The feature that distinguishes the FCAW process from other arc welding processes is the enclosure of fluxing ingredients within a continuously fed tubular electrode. The benefits of FCAW process are the increased productivity due to continuous wire feeding, the metallurgical effects derived from the reactions with flux, and the shapes of weld bead formed by slag. However, FCAW process causes the problem in working environment because it generates much more fume than other welding processes. Recently, the welding fume became a hot issue in the field after some welders were diagnosed as manganese toxcosis and siderosis. This study was started to investigate the characteristics of welding fume and utilize the results from the investigation to protect the welders from welding fume. As a first step, the effect of welding conditions on the fume generation rate(FGR) were investigated during FCAW process with $CO_2$ shielding. The considered welding conditions were welding current, arc voltage, travel speed, contact tube to work distance, and torch angle. The results showed that FGR was affected by all of these factors.

  • PDF

Weld Formability Evaluation and Formability Estimation Model Development in Aluminum Laser Welding (알루미늄 레이저 용접에서 용접부 성형성 평가와 성형성 예측 모델 개발에 대한 연구)

  • Park, Young-Whan
    • Laser Solutions
    • /
    • v.13 no.3
    • /
    • pp.7-12
    • /
    • 2010
  • In this study, laser welding of aluminum AA5182 with AA5356 filler wire was carried out and the formability of the weld joint was evaluated through Erichsen test according to laser power, welding speed and wire feed rate. Fracture was occurred in both directions, perpendicular and parallel to the weld line at 0.75 of Erichsen ratio. Second order Regression model to estimate Erichsen ratio with experimental variables was proposed and the performance of model was evaluated with F-test and average error rate.

  • PDF

Effect of Heat Input Rate on the Weld Defect Formation during High Frequency Electric Resistance Welding (고주파 전기 저항 용접부의 용접 결함 발생 빈도에 미치는 용접 입열 속도의 영향)

  • 조윤희;김충명;김용석
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.201-203
    • /
    • 2000
  • In this study, effect of welding parameters on the defect density in the weldments produced by high frequency electric resistance welding process. The defect density measured by X-ray radiography showed a W-type curve as a function of heat input rate. The mechanisms of the such behavior were discussed based on the chemical compositions of the oxides formed at the weldments.

  • PDF

Effect of Contact-tube to Work Distance on the Melting Rate of GMA Welding (GMA 용접의 용착속도에 미치는 Contact-tube와 모재간 거리의 영향)

  • 경규담;이정헌;천홍정;박병희;강봉룡;김희진
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.87-94
    • /
    • 1996
  • It has been well known in GMA welding process that wire feeding speed (WFS) or deposition rate increases linealy with the increase of wire extension. In this investigation, however, such an well-known relationship was .reconsidered in terms of contact-tube to work distance (CTWD) instead of wire extension. To verify the proposed relationship between WFS and CTWD, bead-on-plate welding was performed with various CTWDs in the range of 15∼35mm under the condition of near-constant voltage and current As expected, the test results showed an excellent linear relation between WFS and CTWD. Furthermore, the value of the slope turned out to be quite similar to those of previous investigators obtained either theoretically or experimentally through the Precise measurement of electrode extension. Present result also demonstred that the increase of CTWD could be very practical measure for increaring deposition rate without any increase of heat input Depending on the tip recess the practical maximum of CTWD was appeared to be limited somewhere in 25∼30mm mainly due to the entrappment of porocity.

  • PDF

The Evaluation of STS304 Coating Layer on S45C Substrate by friction Surfacing Process. (S45C 모계에 대한 STS304 마찰 육성층 평가)

  • Noh, Joong-Suk;Cho, Houn-Jin;Kim, Heung-Ju;Chun, Chang-Gun;Chang, Woong-Seong
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.229-231
    • /
    • 2005
  • Friction surfacing of STS304 consumable rod on S45C substrate was investigated by microstructural observation and mechanical tests. STS304 layer formed a strongly-bonded thick layer under a wide range of surfacing conditions. The hardness distribution showed the peak value in the boundry layer, while the highest coating efficiency obtained in the condition of 1000rpm-2.5mm/sec-2.5mm/sec. As the consumable rotation rate and the traveling rate increased, the coating efficiency tended to decrease. On the other hand, as the feeding rate increased, the coating efficiency appeared to be increased.

  • PDF