• Title/Summary/Keyword: Welding rate

Search Result 589, Processing Time 0.026 seconds

Generation Rate and Content Variation of Manganese in Stainless Steel Welding (스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구)

  • Yoon, Chung Sik;Kim, Jeong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

A Study on the Welding Conditions of Weldability of Team Welding for Galvanized Steel Sheets of Automotive (자동차용 아연도금강판의 심 용접조건과 용접성에 관한 연구)

  • 임재규;정균호;국중하
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2001
  • This paper is studied about welding conditions and weldability of seam welding for galvanized steel sheet of automotive. The fuel tank of automobile is made by seam welding to be required of airtight or oiltight. This method have required a short time for welding, simplicity operation progress and little HAZ. Especially, it has more less residual stress and transformation than different welding progress. So, this study is for decreasing the leakage occurrence rate and to make standard operating condition table anyone can operate easily. Therefore, this study is analyzed the optimum conditions of seam welding for making the automobile with galvanized steel sheets by means of observing the microstructure and configuration back projection, RT, tensile-shear strengths test and SEM. Optimum conditions of seam welding obtained as follows, current 17.2-17.6kA speed 1.0m/min weld time 4:10:6 and current 16.5-17.4kA, speed 0.83m/min, weld time 4:10:4 at t1.0, and current, 18.5-18.9kA, speed 0.8m/min, weld time 4:10:4 and current 16.5-17.4kA, speed 0.68m/mi, weld time 4:10:2 at t1.6.

  • PDF

Butt Welding Characteristics of Austenitic 304 Stainless Steel Using a Continuous Wave Nd:YAG Laser Beam (오스테나이트계 304 스테인리스강의 Nd:YAG 레이저 맞대기 용접특성)

  • Yoo, Young-Tae;Oh, Yong-Seok;Shin, Ho-Jun;Im, Kie-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.165-173
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

Dynamic Analysis of Metal Transfer using VOF Method in GMAW (II) - Short Circuit Transfer Mode - (VOF 방법을 이용한 GMA 용접의 금속 이행에 관한 동적 해석 (II) - 단락 이행 모드의 해석 -)

  • 최상균;고성훈;유중돈;김희진
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.47-55
    • /
    • 1997
  • Dynamic characteristics of the short circuit mode are investigated using the Volume of Fluid (VOF) method. When the initial molten drop volume, contact area and wire feed rate are given, rate change of the molten bridge profiles, pressure and velocity distributions are predicted. The electromagnetic force with proper boundary conditions are included in the formulation to consider the effects of welding current. It is found that the molten metal is transferred to the weld pool mainly due to the pressure difference caused by the curvatures in the initial stage, and electromagnetic force becomes dominant factor in the final stage of short circuit transfer. Necking occurs at the contact position between the molten drop and weld pool, and the initial molten drop volume and welding current have significant effects on break-up time.

  • PDF

Effect of Water-Cooling of Opposite SIde Caused by the Welding of Hull Internal on Weld Properties (이면 수냉이 용접부 물성에 미치는 영향)

  • 서창교;구연백;최승면
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.203-205
    • /
    • 2004
  • Welding sometimes should be done inside-hull after launching. The opposite side is contacted sea-water In this case, it should be a concern that the cooling rate expected very rapid may deteriorate microstructures, and hence these microstructures are hardened, cracking happens, or toughness would be impaired. Therefore, a test program simulating the situation has been planned and welded using the ship class materials (AH32, EH36) with the related welding consumables (E71Tl-1, E81Tl-K2) and then carried out to investigate the effect of cooling rate on weldments quality. Based on the test results, it could be concluded that the welds of which the opposite side of arc is exposed to wet or flowing water are not affected by rapid cooling.

  • PDF

Wear Resistance Characteristics of Iron System MAG Weld Overlays with Chromium and Niobium Carbide Composite (Cr 및 Nb 복합탄화물에 의한 철계 MAG용접 오버fp이의 내마모 특성)

  • 김종철;박경채
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.54-59
    • /
    • 2002
  • Overlays is a treatment of the surface and near-surface regions of a material to allow the surface to perform functions that are distinct from those frictions demanded far the bulk of the material. Welding, thermal spray, quenching, carburizing and nitration have been used as the surface treatment. Especially, weld overlay is a relatively thick layer of filler metal applied to a carbon or low-alloy steel base metal for the purpose of providing a wear resistant surface. In this study, weld overlay was performed by MAG welding on the base metal(SS400) with filler metal which contain composite powders($Cr_3C_2+Mn+Mo+NbC$) and solid wire(JIS-YGW11). Characteristics of hardness and wear resistance on overlays were analyzed by EDS, EPMA, XRD and microstructures. Carbide formations were $M(Cr, Fe)_7C_3$ and NbC phases. And carbide volume fraction, hardness and specific wear resistance of overlays were increased with increasing powder feed rate and decreasing wire fred rate. Hardness and wear resistance were almost proportioned to carbide volume fraction of overlay.

Effect of Bonding Temperature and Heating Rate on Transient Liquid Phase Diffusion Bonding of Ni-Base Superalloy (니켈기 초내열 합금의 천이액상확산접합 특성에 미치는 접합 온도 및 가열 속도의 영향)

  • Choi Woo-Hyuk;Kim Sung-Wook;Kim Jong-Hyun;Kim Gil-Young;Lee Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • This study was carried out to investigate the effect of bonding temperature and heating rate on transient liquid phase diffusion bonding of Ni-base superalloy. The heating rate was varied by $0.1^{\circ}C$/sec, $1^{\circ}C$/sec, $10^{\circ}C$/sec to the bonding temperatures $1100^{\circ}C,\;1150^{\circ}C,\;1200^{\circ}C$ under vacuum. As bonding temperature increased, maximum dissolution width of base metal increased, but a dissolution finishing time decreased. The eutectic width of insert metal in the bonded interlayer decreased linearly in proportion to the square root of holding time during isothermal solidification stage. The bonding temperature was raised, isothermal solidification rate slightly increased. As the heating rate decreased and the bonding temperature increased, the completion time of dissolution after reaching bonding temperature decreased. When the heating rate was very slow, the solidification proceeded before reaching bonding temperature and the time required for the completion of isothermal solidification became reduced.

Weld Characteristic Analysis for Weld Process Variables of Tip-Rotating Arc Welding in Butt Joint of Shipbuilding Steels (조선용 강재의 맞대기 이음에서 팁회전 아크 용접의 공정 변수에 따른 용접 특성 분석)

  • Lee, Jong Jung;Ahn, Sang Hyun;Park, Young Whan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.105-112
    • /
    • 2021
  • Reduction of weld distortions and increase in productivity are some of the major goals of the shipbuilding industry. To address these issues, many researchers have attempted to apply new welding processes. In the shipbuilding industry, steel is the candidate material of choice owing to its good weldability. However, conventional welding techniques are not feasible for avoiding welding problems. Tip-rotating arc welding is one of the high-efficiency welding process that has several advantages, such as high welding speed, high melting rate, low heat input, and less distortion. The present study investigates the influence of the welding variables on the weld characteristics of tip-rotating arc welding. Welding was performed using EH36 as the base metal and SM-70s as the filler metal, which are widely used in shipbuilding. Basic experiments were conducted to understand the effects of the major welding variables, such as welding and tip-rotating speeds. The distortion and mechanical properties of the optimal welding conditions were used to evaluate the tip-rotating arc welding performance. Consequently, the feasibility of the tip-rotating arc welding process for joining steel components was investigated, so that the optimized welding conditions could be applied directly to ship body welding to enhance the quality of the welded joints.