• Title/Summary/Keyword: Welding procedure specification

Search Result 5, Processing Time 0.017 seconds

A study on the welding conditions that affect thermal deformation and mechanical property of Al 5083 non-ferrous alloy for eco-environmental leisure ships

  • Moon, Byung Young;Kim, Kyu Sun;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1190-1199
    • /
    • 2014
  • As a considerable, experimental approach, an autocarriage type of $CO_2$ welding machine and a MIG(metal inert gas) welding robot in the inert gas atmosphere were utilized in order to realize Al 5083 welding to hull and relevant components of green leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc.) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, nonferrous material, applied to manufacturing of eco-environmental leisure ships. With respect to welding condition to minimize the thermal deformation, 150 A and 16 V at the wire-feed rate of 6 mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(heat affected zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5 mm thickness, 284.62 MPa of tensile strength and 11.41 % of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification (WPS).

[Retracted] The Effect of Welding Conditions on Tensile Characteristics and Thermal Stress of Al 5083 Alloy Applied to Co-environmental Leisure Ships ([논문 철회] 친환경 레져선박에 적용되는 Al 5083 합금의 인장특성 및 열응력에 미치는 용접조건의 영향)

  • Moon, Byung Young;Lee, Ki Yeol;Kim, Kyu Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.548-555
    • /
    • 2014
  • As a considerable, experimental approach, an Auto-carriage type of $CO_2$ welding machine and a MIG(Metal Inert Gas) welding robot under inert gas atmosphere were utilized in order to realize Al 5083 welding applied to hull and relevant components of green Al leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, non-ferrous material, applied to manufacturing of co-environmental Al leisure ships. With respect to welding condition to minimize the thermal deformation, 150A and 16V at the wire-feed rate of 6mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(Heat Affected Zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5mm thickness, 284.62MPa of tensile strength and 11.41% of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification(WPS).

ON THE DEVELOPMENT OF STUD AND ARC WELDING DUAL-PURPOSE ROBOT SYSTEM (스터트 및 아크 용접 겸용 로보트 시스템의 개발)

  • 이용중;유범상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.582-587
    • /
    • 1993
  • A robot application system is developed for dual purpose of stud welding and are welding to weld plates in the manufacturing of elevator cabin. The production quantity is not so big to accommodate separate stations for stud welding and are welding respectively while the need for randomization of the processes is urgent. A robot with specification for spot welding is chosen, which is appropriate for stud welding. Some implementations are made so that the robot may also be shared for are welding process. Common jig and fixture is designed for the dual purpose. Important aspects in the procedure of system design, installation, and commissioning are stated, and signal set-ups and logic diagrams are illustrated.

  • PDF

A Study of Optimum Shielding Gas Flow Rate in FCAW for Shipbuilding (선박조립과정의 FCAW 적용시 적정 보호가스 유량에 대한 연구)

  • Lee, Hoon-Dong;Shim, Chun-Sik;Song, Ha-Cheol;Yum, Jae-Seon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • FCAW(Flux Cored Arc Welding) is a widely used welding method in shipbuilding. It also conducts WPS(Welding Procedure Specification) requested by the classification variations of the factors which affect the quality on the welded area such as thickness of base metal, type of welding wire and shielding gas etc. which has to be satisfied. CO2 is commonly used as a shielding gas for FCAW due to the economic point of view. The amount of shielding gas is stated when classification certify WPS. However, the shielding gas is unnecessarily used at the shipyard leaning only on the welder's experience as there are classification standards for using the shielding gas. It causes production cost to rise. Also recently, CO2 is a main contributor for global warming, and large amounts of CO2 are discharged into the atmosphere during shipbuilding processes without any filtration. Therefore it was confirmed by the security of the welded area as a result of conducting the destructive and non-destructive tests with setting up the factors and the standards by using the Taguchi method. Then the FCAW shielding gas's amounts were calculated precisely when assembling a ship. It will be applied to cost reduction and prevention of environmental pollution at the shipyard.

A Study on Mechanical Properties of Fillet Weldment in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 필릿용접부의 기계적특성에 관한 연구)

  • 김영표;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.49-58
    • /
    • 1996
  • In Korea Gas Corporation, as one of the pipeline repairing methods, damaged pipelines are sometimes treated with a temporally employment of split sleeve. On conducting the repair process, circumferential fillet and longitudinal groove welding usually must be included. For the case of groove welding, a considerable amount of R&D have been carried out related to property changes, while few study on the property change in fillet welding has been conducted. In this paper, so as to confirm the specification of fillet welding in terms of safety and reliability, properties changed by fillet welding were investigated for two welding processes. Qualifying tests such as reviewing macrostructure and nick-break tests were performed according to API 1104 and ASME section IX. In addition, tensile properties and hardness were evaluated according to KS B0841 and BS 4515. The fillet weld prepared by the qualified procedure showed melting depth of 0.8∼1.3mm and heat affected zone of 2.8∼3.4mm length. No crack and lack of penetration were observed. And the results of hardness and nick-break tests satisfied code requirements. The area crossed by fillet and groove welding line was found to have minimal tensile strength.

  • PDF