• 제목/요약/키워드: Welding nozzle

검색결과 92건 처리시간 0.02초

노즐 이종용접부 잔류응력에 미치는 동종용접의 영향 평가 (Evaluation of Similar Metal Weld Effects on Residual Stress of Nozzle Dissimilar Metal Weld)

  • 유승천;정재욱;장윤석;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.110-114
    • /
    • 2008
  • Determination of weld-induced residual stress has been an important issue in nuclear power industry because several failures were reported in dissimilar metal weld parts due to primary water stress corrosion cracking. In this context, a couple of remarkable round robin analyses were conducted to quantify the welding simulation variables and to establish optimized numerical analysis process. The purpose of the present research is to introduce welding simulation results for a safety and relief nozzle, which has a dissimilar metal weld part as well as a similar metal weld part. First, finite element analyses are carried out to calculate residual stresses at the inside of nozzle considering only dissimilar metal welding. Subsequently, residual stresses taking into account both the dissimilar and similar metal welding are computed. The similar metal weld effect is evaluated by compa

  • PDF

원자로냉각재계통 소구경 관통관 용접부 부분노즐교체 예방정비를 위한 최적 용접공정에 관한 연구 (Study on Optimal Welding Processes of Half Nozzle Repair on Small Bore Piping Welds in Reactor Coolant System)

  • 김영주;정광운;최광민;최동철;조상범;조홍석
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.58-65
    • /
    • 2018
  • The purpose of this study is to develop a Half Nozzle Repair(HNR) process to prevent the leakage from welds on small bore piping in Reactor Coolant System. The Codes & Standards of tempered bead and design requirements of J-Groove welds are reviewed. Automatic machine GTAW welding and machining equipments are developed to perform HNR process. Single pass welding and overlay welding equipments are conducted in order to obtain the optimal temper bead welding process parameters with Alloy 52M filler wire. Coarse grain heat affected zone(CGHAZ) is formed by rapid cooling rate in heat affected zone after welding. Accordingly, a proper temper bead technique is required to reduce CGHAZ in 1-Layer of welds by 2- and 3-Layers. Mock-up tests show that the developed HNR process is possible to meet ASME Code & Standard requirements without any defect.

원전 노즐 용접부 잔류응력 예측을 위한 Round Robin 해석 결과 분석 (Assessment of Round Robin Analyses Results on Welding Residual Stress Prediction in a Nuclear Power Plant Nozzle)

  • 송태광;배홍열;김윤재;이경수;박치용;양준석;허남수;김종욱;박준수;송민섭;이승건;김종성;유승천;장윤석
    • 대한기계학회논문집A
    • /
    • 제33권1호
    • /
    • pp.72-81
    • /
    • 2009
  • This paper provides simulational round robin test results for welding residual stress prediction of safety/relief nozzle. To quantify the welding variables and define the recommendation for prediction and determination of welding residual stress, 6 partners in 5 institutes participated in round robin test. It is concluded that compressive axial and hoop residual stress occurs in dissimilar metal weld and pre-existing residual stress distribution in dissimilar metal weld was affected by similar metal weld due to short length of safe end. Although the reason for the deviation among the results was not pursued further, the effect of several key elements of FE analyses on welding residual stress was investigated in this paper.

고리 원전 밀림관 노즐의 동종용접과 예방용접 Overlay가 보수용접 잔류응력에 미치는 영향 (Effect of Similar Metal Weld & Preemptive Weld Overlay On Residual Stress of Repair Weldment In Surge Nozzle)

  • 오창영;송태광;심광보;김지수;김윤재;이경수
    • 한국전산구조공학회논문집
    • /
    • 제22권6호
    • /
    • pp.557-564
    • /
    • 2009
  • 용접과정 중 발생되는 인장잔류응력은 원전 배관 이종용접부의 PWSCC가 발생되는 원인 중 하나라고 알려져 있다. 일반적으로 보수용접은 용접과정 중 흔히 일어나는 현상이다. 보수용접은 강한 인장잔류응력을 유도하기 때문에 이종용접부의 PWSCC를 유도하기 쉽다. 본 논문에서는 강한 인장잔류응력이 발생되는 보수용접부에 대해 보수용접 깊이에 따라 동종용접과 예방용접 overlay로 인하여 인장잔류응력의 크기가 변화하는 것을 정량적으로 확인하였다.

가압경수로 노즐 맞대기 이종금속용접부의 용접잔류응력 예측 (Welding Residual Stress Distributions for Dissimilar Metal Nozzle Butt Welds in Pressurized Water Reactors)

  • 김지수;김주희;배홍열;오창영;김윤재;이경수;송태광
    • 대한기계학회논문집A
    • /
    • 제36권2호
    • /
    • pp.137-148
    • /
    • 2012
  • 가압경수로의 많은 관통관 중에서 니켈 기저 합금인 Inconel alloy 600 계열의 이종금속용접부는 일차수응력부식균열에 민감하며, 이를 평가하기 위하여 용접부에 작용하는 잔류응력분포를 정확히 예측하는 것이 중요하다. 본 논문에서는 유한요소해석을 이용하여 노즐 맞대기 이종금속용접부에 작용하는 일반적인 잔류응력분포를 예측하였다. 이를 위해 노즐 맞대기 이종금속용접부의 형상을 단순화하여 특정한 형상 변수에 따른 용접부 잔류응력분포를 확인하였으며, 이를 토대로 기존 문헌에 제시된 오스테나이트계 배관 맞대기 용접부 잔류응력 분포식을 수정하여 가압경수로 노즐 맞대기 이종금속용접부에 작용하는 일반적인 잔류응력분포 예측식을 제시하였다.

21/4Cr-1Mo강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구 (A Study on the Reheat Crack around Welded Joint of Pressusre Vessel with 21/4Cr-1Mo Steel)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.227-227
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, 2 ¼Cr-1Mo steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence. (Received December 2, 1999)

$2\frac{1}{4}Cr-1Mo$강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구 (A Study on the Reheat Crack around Welded Joint of Pressure Vessel with $2\frac{1}{4}Cr-1Mo$ Steel)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.100-104
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, $2\frac{1}{4}Cr-1Mo$ steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence.

  • PDF

수치해석방법을 이용한 이종금속용접부에서의 균열성장해석 (Crack Growth Analysis of Dissimilar Metal Weld using a Numerical Method)

  • 김상철;김만원
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.100-106
    • /
    • 2010
  • In this paper crack propagation analyses in the dissimilar metal weldment of a nozzle were performed using a finite element alternating method (FEAM). A two-dimensional axisymmetric finite element nozzle model was prepared and welding simulation including the thermal heat transfer analysis and the thermal stress analysis was performed. Initial cracks were inserted at weld and heat affected zone in the finite element model which has welding residual stress distribution obtained from the welding simulation. To calculate crack propagation trajectories of these cracks, a new fatigue crack evaluation module was developed in addition to the previous FEAM program. With the new FEAM fatigue crack evaluation module, crack propagation trajectory and crack growth time were calculated automatically and effectively.

Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

  • Lee, Hee-Keun;Chun, Kwang-San;Park, Sang-Hyeon;Kang, Chung-Yun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.770-783
    • /
    • 2015
  • Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

Alloy 600 노즐관통부의 이종금속용접 잔류응력에 따른 응력부식균열 거동 분석 (Analysis of SCC Behavior of Alloy 600 Nozzle Penetration According to Residual Stress Induced by Dissimilar Metal Welding)

  • 김성우;김홍표;김동진;정재욱;장윤석
    • 한국압력기기공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.34-41
    • /
    • 2010
  • This work is concerned with the analysis of stress corrosion cracking(SCC) behavior of Alloy 600 nozzle penetration mock-up according to a residual stress induced by a dissimilar metal welding(DMW) in a nuclear reactor pressure vessel. The effects of the dimension and materials of the nozzle penetration on the deformation and the residual stress induced by DMW were investigated using a finite element analysis(FEA). The inner diameter(ID) change of the nozzle by DMW and its dependance on the design variables, calculated by FEA, were well consistent with those measured from the mock-up. Accelerated SCC tests were performed for three mock-ups with different wall thicknesses in a highly acidic solution to investigate mainly the effect of the residual stress on the SCC behavior of Alloy 600 nozzle. From a destructive examination of the mock-up after the tests, the SCC behavior of the nozzle was fairly related with the residual stress induced by DMW : axial cracks were found in the ID surface of the nozzle within the J-weld region where the highest tensile hoop stress was predicted by FEA, while circumferential cracks were observed beyond both J-weld root and toe where the highest tensile axial stress was expected.

  • PDF