• Title/Summary/Keyword: Welding metallurgy

Search Result 43, Processing Time 0.029 seconds

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

The Spot Weldability of SD35 and SD30A Steel for Reinforcement Bar (건설용 이형 철근(SD35, SD30A)의 점용접성)

  • Lee, Su Yeon;Park, Dae Young;Huh, Seok Hwan;Youn, Kuk Tea;Lee, Chan Gyu;Gornakov, Vladimir S.;Taguchi, Osamu;Yoo, Dea Hwang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.277-286
    • /
    • 2011
  • The spot weldability of metal joints between SD35 and SD30A steel was investigated. This study was aimed to determine the spot welding parameters (i.e. welding current and time) for reinforcement bar joint and to evaluate the weldability, mechanical strength, hardness and microstructure. The results indicated that shear strength and elongation of the welding joints at 12.5kA and 1000 ms were 26.7 $kgf/mm^2$ and 22%, respectively. And fracture distribution of them by using shear and tensile test showed 100% necking mode and 100% ductile mode, respectively.

Development of Optical Device Housing Compacted Using SUS304L Granulated Powders

  • Suzuki, Hironori;Hara, Toshihiro;Ogino, Yukinobu;Sato, Yasushi;Tomota, Yo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.754-755
    • /
    • 2006
  • In order to develop the SUS304L housing by powder metallurgy for an optical device useful for the FTTH communication system, the optimum compacting pressure and sintering temperature were investigated using granulated powder as the material to satisfy high air-tightness and high laser-weldability. Then the laser-welding test of specimen made under the optimum condition was carried out to observe welding sputters.

  • PDF

Weldability of Al Alloys, Part II :HAZ Cgaracteristics (알루미늄 합금의 용접특성 - part II)

  • 이창희;장래웅
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.2-8
    • /
    • 1993
  • A literature review was conducted to gather informations available on the welding metallurgy of aluminum alloys, emphasized on characteristics in the heat affected zone(HAZ). Nominal metallurgical reactions that occur in aluminum alloys provide a basis for understanding aluminum welding metallurgy. However, welding reactions differ to some extent because of the relatively short times involved, and the non-isothermal heating excursed. For non-heat treatable alloys, welding primarily affects these alloys by annealing (recrystallization and growth) and to a less extent, changes in low temperature precipitates. In the case of heat treatable alloys, the resulting HAZ properties depend upon alloy composition, starting temper, heat input and post weld heat treatments.

  • PDF

Investigation of Influence of Pulse-periodical Laser Radiation Power on Stability of Liquid-metal Contacts between Powder Particles during Selective Laser Sintering

  • Beljavin, K.E.;Minko, D.V.;Bykov, R.P.;Kuznechik, O.O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.518-519
    • /
    • 2006
  • A connection between pulse-periodical laser radiation power and stability of liquid-metal contacts between powder particles during selective laser sintering (SLS) is determined based on analysis solving the problem of stability of liquid column in the gravity and capillary forces field. On the grounds of obtained relationships the optimization of pulse-periodical laser radiation power and SLS-process duration is realized, that allows to produce voluminous powder porous materials with pre-determined physical and mechanical properties and surface geometry. Results of metallographic investigations of powder porous materials of titanium powder produced with technological regimes calculated by means of obtained relationships are given in the work

  • PDF

Effects of Welding Conditions and Material Arrangement on Tensile Properties of Friction Stir Lap Welded of Dissimilar Al Alloy, A5J32/A5052 (A5J32/A5052 이종 알루미늄 합금 겹치기 마찰교반접합부의 인장성질에 미치는 재료배열 및 접합조건의 영향)

  • Yoon, Tae-Jin;Kang, Myung-Chang;Kang, Chung-Yun
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.302-307
    • /
    • 2013
  • A5J32-T4 and A5052-H32 dissimilar aluminum alloy plates with thickness of 1.6 and 1.5 mm were welded by friction stir lap welding (FSLW). The FSLW were studied using different probe length tool and various welding conditions which is rotation speed of 1000, 1500 rpm and welding speed of 100 to 600 mm/min and material arrangement, respectively. The effects of plunge depth of tool and welding conditions on tensile properties and weld nugget formation. The results showed that three type nugget shapes such as hooking, void, sound have been observed with revolutionary pitch. This plunge depth and material arrangement were found to effect on the void and hooking formation, which in turn significantly influenced the mechanical properties. The maximum joint efficiency of the FSLWed plates was about 90% compared to base metal, A5052-H32 when the A5052-H32 was positioned upper plate and plunge depth was positioned at near interface between upper and lower plates.

A New Technology of Hardening Porous Materials of Titan Powders

  • Belyavin, K.E.;Minko, D.V.;Reshetnikov, N.V.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1012-1013
    • /
    • 2006
  • A technology of hardening porous materials of titan powders has been elaborated. The technology is based on passing alternating current with duration of ${\sim}10^{-1}{\ldots}10^1$ s through porous ($35{\ldots}40%$) blanks made by method of Sintering by Electric Discharge (SED) by passing a pulse of current with duration of ${\sim}10^{-5}{\ldots}10^{-3}$ s. The influence of technological regimes of porous blanks treatment on their structure and properties is investigated. Geometry and dimension of contact necks between powder particles of obtained samples are evaluated. Variations of porosity and strengths as well as microstructure of porous samples materials before and after treatment are investigated. Optimum range of treatment technological regimes is determined within which porosity of $30{\ldots}35%$ with maximum strength values.

  • PDF