• Title/Summary/Keyword: Welding engineering

Search Result 2,720, Processing Time 0.033 seconds

Adhesion reliability of flexible copper clad laminate under constant temperature and humidity condition by thickness of Ni/Cr seed layer (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Yoon, Jae-Hyun;Choi, Don-Hyun;Kim, Yong-Il;Jung, Seong-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.75-75
    • /
    • 2009
  • 연성회로기판은 일반적으로 절연체를 이루는 폴리이미드와 전도체를 이루는 구리로 구성되어 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 기계적 특성, 공정성 등의 장점으로 인해 연성회로기판의 절연체로서 제안되었지만 전도체를 이루는 구리와의 접합 특성이 우수하지 않기 때문에 많은 연구가 현재까지 진행되고 있고, 그 결과 연성회로기판의 접합 특성에 많은 개선이 이루어짐과 동시에 다양한 공정 방법이 제안되고 있다. 하지만 고온다습한 환경에서 사용될 경우 폴리이미드의 높은 흡습성과, 구리와 seed layer의 산화 문제로 인해 접합 특성이 저하된다는 단점 또한 가지고 있다. 따라서 본 연구를 통해 고온다습한 조건하에서 seed layer가 80Ni/20Cr 합금으로 구성된 연성회로기판의 seed layer의 두께와 시효시간으로 인해 발생하는 접합 신뢰성의 차이를 관찰하였다. 본 연구에서는 두께 $25{\mu}m$의 폴리이미드 위에 각각 100, 200, $300{\AA}$ 두께의 80Ni/20Cr의 합금 조성을 가지는 seed layer를 스퍼터링 공정을 통해 형성한 후 전해도금법을 이용하여 $8{\mu}m$ 두께의 구리 전도층을 형성하였다. 접합 특성 평가를 위해 ICP 규격에 따라 전도층 패턴을 폭 3.2mm, 길이 230mm로 시편을 제작하여 50.8mm/min의 이송 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 또한 $85^{\circ}C$/85% 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효 처리 후 같은 방법으로 연성회로기판의 접합 특성을 평가하였다. 파면의 형상과 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 파면의 잔여물 분석을 위해 EPMA (Energy probe microanalysis)를 사용하였고 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 분석하였다.

  • PDF

Effects of alloy elements on electrochemical characteristics improvement of stainless steel in sea water (해수환경하에서 스테인리스강의 전기화학적 특성 개선을 위한 합금원소의 영향)

  • Lee, Jung-Hyung;Choi, Yong-Won;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.890-899
    • /
    • 2014
  • Austenitic stainless steel is widely used in various industries due to its excellent corrosion resistance. However, Cr carbides precipitation along the grain boundaries after heat treatment or welding may develop Cr depleted zone, which acts as a preferential site for intergranular corrosion attack. To resolve this, carbon stabilizing element such as Ti or Nb are added to suppress formation of Cr carbides. However, there are few reports on corrosion characteristics under seawater environment of the stabilized stainless steel. This study investigated the effects of alloying contents on the electrochemical characteristics in seawater of stainless steel containing stabilizing element(Ti and Nb). To achieve this, the changes on the microstructure due to alloying were observed with microscope, and the electrochemical characteristics were determined by measurement of natural potential and potentiodynamic polarization experiments. The microscopic observation revealed that all specimens had inclusions other than the austenite matrix phase due to the addition of alloying elements. Such inclusions are considered to have different electrochemical characteristics from those of the matrix, and thus a clear distinction was found according to the type of stabilizers and the contents. The results of this study suggest that it is important to consider the effects of alloying contents on the electrochemical characteristics in seawater with the addition of Ti or Nb into austenitic stainless steel.

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle (원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구)

  • Bae, Hong Yeol;Oh, Chang Young;Kim, Yun Jae;Kim, Kwon Hee;Chae, Soo Won;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.387-395
    • /
    • 2013
  • Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).

Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel (질소 보호 가스 첨가가 하이퍼 듀플렉스 스테인리스 밀봉용접재의 마모부식 저항성에 미치는 영향)

  • Kim, Hye-Jin;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • Duplex stainless steels with nearly equal fraction of the ferrite(${\alpha}$) phase and austenite(${\gamma}$) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE=wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of ${\alpha}$-phase and ${\gamma}$-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of $Cr_2N$ are the key points of this study. The primary results of this study are as follows. The addition of $N_2$ to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the ${\alpha}$-phase to ${\gamma}$-phase, increasing the fraction of ${\gamma}$-phase as well as decreasing the precipitation of $Cr_2N$. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing $N_2$ decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of ${\gamma}$-phase and the stability of passive film according to the addition $N_2$ gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

Numerical Analysis on the Structure Behavior of the Connected Long-span Beam during Excavation in Narrow Streets (도로 폭이 좁은 굴착공사에서 연결부가 적용되는 장지간 주형의 수치해석적 거동 평가)

  • Choi, Kwang-Sou;Ha, Sang-Bong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • This study evaluates the structural behavior of connected long-span beams applied for excavation in urban areas with a narrow street. Generally, the reliability of the connection is reduced owing to the defect of the upper flange in the connection. An improved connection part was developed to complement the defects in the connected long-span beam. A finite element analysis based on a commercial program, ABAQUS, was employed to evaluate the behavior of the improved connection part. A numerical analysis model was proposed to analyze the high-strength bolt connection and the composite behavior of steel and concrete applied to the improved connection. The suitability of the proposed numerical analysis was verified by comparing the experimental and numerical analysis results of the references. Using the proposed numerical analysis method, the improved and general connections were analyzed and compared with each other. The stress distribution and elastic-plastic behavior of the long-span beam were analyzed numerically. The analysis confirmed that 25% of the compressive stress was improved, resulting in the improvement of structural safety and performance.

Study of adhesion properties of flexible copper clad laminate having various thickness of Cr seed layer under constant temperature and humidity condition (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Kim, Yong-Il;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.80-80
    • /
    • 2010
  • 전자제품의 소형화, 경량화, 고집적화가 심화됨에 따라 전자제품을 구성하는 회로의 미세화 또한 요구되고 있다. 이러한 요구는 경성회로기판 (rigid printed circuit board, RPCB) 뿐만 아니라 연성회로기판 (flexible printed circuit board, FPCB) 에도 적용되고 있으며 이에 대한 많은 연구 또한 이루어지고 있다. 연성회로기판은 일반적으로 절연층을 이루는 폴리이미드 (polyimide, PI)와 전도층을 이루는 구리로 이루어져 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 우수한 기계적 특성, 연속공정이 가능한 장점을 가지고 있으나, 고온다습한 환경하에서 높은 흡습성으로 인해 전도층을 이루는 구리와의 접합특성이 저하되는 단점 또한 가지고 있다. 또한 전도층을 이루는 구리는 고온다습한 환경하에서 산화 발생이 용이하기 때문에 접합특성의 감소를 야기할 수 있다. 따라서 본 연구에서는 고온다습한 조건하에서 sputtering and plating 공정을 통해 순수 Cr seed layer를 가지는 연성회로기판의 seed layer의 두께와 시효시간의 변화로 인해 발생하는 접합특성의 변화를 관찰하고 분석하였다. 본 연구에서는 두께 $25{\mu}m$의 일본 Kadena사(社)에서 제작된 폴리이미드 상에 sputtering 공정을 통해 순수 Cr으로 이루어진 각각 두께 100, 200, $300{\AA}$의 seed layer를 형성한 후 전해도금법을 이용, 두께 $8{\mu}m$의 구리 전도층을 형성한 시료를 사용하였다. 제작된 시료는 고온다습한 환경하에서의 접합 특성의 변화를 관찰하기 위하여 $85^{\circ}C$/85%RH 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효처리 한 후, Interconnections Packaging Circuitry (IPC) 규격에 의거하여 접합강도를 측정하였다. 시료의 전도층은 폭 3.2mm 길이 230mm의 패턴을 가지도록, 절연층은 폭 10mm, 길이 230mm으로 구성되었으며 이를 50.8mm/min의 박리 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 파면의 형상과 화학적 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 관찰 분석하였다.

  • PDF

Evaluation of the corrosion property on the welded zone of forged steel piston crown with types of filler metals (용접재료별 단강 피스톤 크라운 용접부위의 부식특성에 대한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Since the oil price has been significantly jumped for recent some years, the diesel engine of the merchant ship has been mainly used the heavy oil of low quality. Thus, it has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of most parts surrounded with combustion chamber is more serious compared to the other parts of the engine. Therefore, an optimum weldment for these parts is very important to prolong their lifetime in a economical point of view. In this study, four types of filler metals such as Inconel 625, 718, 1.25Cr-0.5Mo and 0.5Mo were welded with SMAW and GTAW methods in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H2SO4 solution. The weld metal and base metal exhibited the best and worst corrosion resistance in all cases of filler metals. In particular, the weld metal welded with filler metals of Inconel 718 revealed the best corrosion resistance among the filler metals, and Inconel 625 followed the Inconel 718. Hardness relatively indicated higher value in the weld metal compared to the base metal. Furthermore, Inconel 625 and 718 indicated higher values of hardness compared to 1.25cr-0.5Mo and 0,5Mo filler metals in the weld metal.

Seismic behavior of K-type eccentrically braced frames with high strength steel based on PBSD method

  • Li, Shen;Wang, Chao-yu;Li, Xiao-lei;Jian, Zheng;Tian, Jian-bo
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.667-685
    • /
    • 2018
  • In eccentrically braced steel frames (EBFs), the links are fuse members which enter inelastic phase before other structure members and dissipate the seismic energy. Based on the force-based seismic design method, damages and plastic deformations are limited to the links, and the main structure members are required tremendous sizes to ensure elastic with limited or no damage. Force-based seismic design method is very common and is found in most design codes, it is unable to determine the inelastic response of the structure and the damages of the members. Nowadays, methods of seismic design are emphasizing more on performance-based seismic design concept to have a more realistic assessment of the inelastic response of the structure. Links use ordinary steel Q345 (the nominal yielding strength $f_y{\geq}345MPa$) while other members use high strength steel (Q460 $f_y{\geq}460MPa$ or Q690 $f_y{\geq}690MPa$) in eccentrically braced frames with high strength steel combination (HSS-EBFs). The application of high strength steels brings out many advantages, including higher safety ensured by higher strength in elastic state, better economy which results from the smaller member size and structural weight as well as the corresponding welding work, and most importantly, the application of high strength steel in seismic fortification zone, which is helpful to popularize the extensive use of high strength steel. In order to comparison seismic behavior between HSS-EBFs and ordinary EBFs, on the basis of experimental study, four structures with 5, 10, 15 and 20 stories were designed by PBSD method for HSS-EBFs and ordinary EBFs. Nonlinear static and dynamic analysis is applied to all designs. The loading capacity, lateral stiffness, ductility and story drifts and failure mode under rare earthquake of the designs are compared. Analyses results indicated that HSS-EBFs have similar loading capacity with ordinary EBFs while the lateral stiffness and ductility of HSS-EBFs is lower than that of EBFs. HSS-EBFs and ordinary EBFs designed by PBSD method have the similar failure mode and story drift distribution under rare earthquake, the steel weight of HSS-EBFs is 10%-15% lower than ordinary EBFs resulting in good economic efficiency.

Performance Evaluation of Fabric Sensors for Movement-monitoring Smart Clothing: Based on the Experiment on a Dummy (동작 모니터링 스마트 의류를 위한 직물 센서의 성능 평가: 더미 실험을 중심으로)

  • Cho, Hyun-Seung;Park, Sun-Hyeong;Kang, Da-Hye;Lee, Kang-Hwi;Kang, Seung-Jin;Han, Bo-Ram;Oh, Jung-Hoon;Lee, Hae-Dong;Lee, Joo-Hyeon;Lee, Jeong-Whan
    • Science of Emotion and Sensibility
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • TThis study explored the requirement of fabric sensor that can measure the motion of the joint effectively by measuring and analyzing the variation in electric resistance of a sensor in accordance with bending and stretching motion of the arm by the implementation of a motion sensor utilizing conductive fabric. For this purpose, on both sides of two kinds of knitted fabric, namely 'L' fabric and 'W' fabric Single Wall Carbon Nano-Tube(SWCNT) was coated, fabric sensor was developed by finishing them in a variety of ways, and the sensor was attached to the arm band. The fabric sensor consisted of total 48 cases, namely background fabric for coating, the method of sensor attachment, the number of layer of sensors, the length of sensor, and the width of sensor. The performance of fabric motion sensors in terms of a dummy arm, that is, a Con-Trex MJ with 48 arm bands around it was evaluated. For each arm band, a total of 48, fastened around the dummy arm, it was adjusted to repeat the bending and stretching at the frequency : 0.5Hz, ROM : $20^{\circ}{\sim}120^{\circ}$, the voltage was recorded for each case after conducting three sets of repeat measurement for a total of 48 cases. As a result of the experiment, and as a consequences of the evaluation and analysis of the voltage based on the uniformity of the base line of the peak-to-peak voltage(Vp-p), the uniformity of Vp-p within the same set, and the uniformity of the Vp-p among three sets, the fabric sensors that have been configured in SWCNT coated 'L' fabric / welding / two layers / $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$, and SWCNT coated 'W' fabric / welding / two layers / $50{\times}10mm$ exhibited the most uniform and stable signal value within 5% of the total variation rate. Through all these results of the experiment, it was confirmed that SWCNT coated fabric was suitable for a sensor that can measure the human limb operation when it was implemented as a fabric sensor in a variety of forms, and the optimal sensor types were identified.

A Study of the Vibration Characteristics of a Haptic Vibrator for Horizontal and Vertical Magnetization (수평 및 수직 착자에 대한 햅틱 진동자의 진동특성에 관한 연구)

  • Ko, Dong Shin;Hur, Deog Jae;Park, Tae Won;Lee, Jai Hyuk;Lee, Sung Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.415-421
    • /
    • 2015
  • This paper describes the study of the design procedure for the step-by-step setup parameters and of the magnetizing method for performance and size reduction in the development of a haptic vibrator. The study of magnetization was accomplished by comparing the electromagnetic force in accordance with the horizontal and the vertical magnetization. The theoretical results indicated that the horizontal magnetization resulted in a better performance. The systematic design of a step-by-step procedure for establishing the design parameters was verified by testing the characteristics of the fabricated prototype product. The vibration response function analysis and electric field analysis were processed by decoupling of the analytical method, and these were determined to be in good agreement with the test results. The design parameters to contributing to the product reliability included the spring height, the welding position, and the coil position. The sensitivity of the electromagnetic field and the performance change were analyzed based on the design parameters. As a result, we proposed a design method to implement a reliability-based, high performance haptic vibrator.