• Title/Summary/Keyword: Welding cost

Search Result 327, Processing Time 0.033 seconds

Mechanical characteristics and bead geometry according to laser welding parameters for tailor-welded-branks of hot press forming steel (레이저용접을 이용한 핫프레스포밍강의 맞춤식 재단 용접강판에서 용접공정변수에 따른 기계적 특성 및 비드형상)

  • Kang, Minjung;Kim, Cheolhee;Seo, Jong Dock;Lim, Chang Young
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.5-10
    • /
    • 2015
  • A tailor welded blank (TWB) is a welded blank comprised of two or more sheets with different properties - thickness, strengths or formabilities. TWBs are applied to the body panels to reduce weight and cost of the part. In this research, ultra high strength steel and high ductility steel were joined and laser tailor welded blanks were implemented. Yb:YAG laser welding tests were conducted with various welding conditions, and mechanical and geometrical characteristics of weldments were evaluated.

A Study on the Mitigation of Welding Distortion of a Precision Component for Automobile Transmission (자동차 변속기용 정밀 부품의 용접변형 감소화에 관한 연구)

  • Chung, Hoi-Yoon;Kim, Jae-Woong;Yun, Seok-Chul
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.31-37
    • /
    • 2012
  • In recent years, a demand for precision-welding is increasing in wide industrial fields for getting a high quality welded structures. Although laser welding is commonly used for precision-welding, gas tungsten arc (GTA) welding is also attempted as a precision-welding due to the cost benefit. However, welding heat causes an uneven temperature distribution leading to welding deformation. Since it causes geometric errors and degrades product quality, welding distortion recently rises as an important issue in the field of automobile parts. To control welding deformation, it is needed to design in shapes that can maximize stiffness against deformation during welding; control the welding sequence; minimize heat input; and weld allowing reverse deformation; etc. Thus it is necessary to find the one, among such approaches, that can minimize the deformation range by mathematical analysis and understand how effective it would be when it is actually used in industrial fields. This study performs analyses by numerical calculations and experiments for the De-Tent Lever, one of transmission part that requires precision the most among automobile parts, as the subject of experiment. Decrease in welding deformation is required for this part, since there is currently a trouble in guaranteeing precision due to angular deformation by welding between boss and plate. Finally the ways to minimize welding deformation has been suggested in this study through analyses on it.

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.

A Study on the Minimum Production Cost of Welded Built-up Beams (용접 조립보의 최소 생산 비용에 관한 연구)

  • Chang-Doo Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.154-164
    • /
    • 1994
  • In this study, to find an economical production method which yields welded built-up beams with high quality, simulation techniques and optimization method are used. At first, fabrication variables such as welding current, voltage and speed and heated depth and breadth are selected and fabrication cost of a built-up beam is expressed by these parameters, which is optimized under the constraints. As advanced studies, total production cost including the fabrication cost and the material cost of the beam is expressed by the fabrication and design variables, and optimized with the design constraints by the class rules. In addition, assuming that heating for straightening is impossible. the optimization method of multi-objective functions based on the weighting method is applied to obtain the compromised optimal solutions of the total production cost and the welding deformation.

  • PDF

A vision for the Welding Industry in the USA

  • Kim, Dong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.13-18
    • /
    • 2000
  • Welding is critical technique for the joining of materials in the nation's major Manufacturing industries. Since 1998, leaders in welding industry have defined a vision of the issues and opportunities that it will face in 2020. In developing this vision document, more than 25 senior managers and respected experts from various segments of the welding community met to begin a dialog about the future of the welding industry. They were brought together to develop a long-range business plan for their industry that would identify how it would meet the needs of manufacturers, of the marketplace, and of society in 2020. In essence, these decision makers created an ideal vision of the state of their industry in 20 years, and the strategy to reach it. Welding is a precise, reliable, and cost-effective, method for joining materials. No other technique is as widely used by manufacturers to join metals and alloys efficiently. Most of the familiar objects in modern society, form buildings and bridges, to vehicles, computers, and medical devices, could not be produced without the use of welding. Despite the importance of welding to the manufacturing industry, the leaders in this area felt that welding was not appreciated as much as it should be from the society. The welding industry consists of the “users” of welding techniques as well as the companies, universities and other organizations that industry look for improvements in their operations by 2020, and should find their interest addressed in this document. A major economic impact study co sponsored by AWS and EWI and supported by US Navy, State of Ohio, US Department of Commerce, and major companies was kicked off. This two-year study will determine the economic impact of welding on the United States economy. The objective of this study is to break a paradigm about welding-those of us who are heavily involved in welding, believe strongly that much of our gross domestic product is directly dependent on welding. Furthermore, continued advances in the field of welding are necessary to achieving further increases in productivity that makes our economy strong. Yet, despite intuition, anecdotal information, and fragmented analyses, the completing quantitative information that would proved the justification for strategic actions to further develop this critical field is not currently available.

  • PDF

A Experiment Study for Welding Optimization of fillet Welded Structure (필릿 용접 구조물의 용접 최적화률 위한 실험적 연구)

  • Kim, Il-Soo;Na, Hyun-Ho;Kim, Ji-Sun;Lee, Ji-Hye
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1054-1061
    • /
    • 2011
  • GMA welding process is a production process to improve productivity for the provision of higher quality of material, These includs numerous process variables that could affect welding quality, productivity and cost savings. Recently, the welding part of construction equipment had frequent failure of major components in the welding part of each subsidiary material due to shock which is very poor according to the welding part. Therefore, the implementation of sound welding procedure is the most decisive factor for the reliability of construction machinery. The data generated through experimens conducted in this study has validated its effectiveness for the optimization of bead geometry and process variables is presented. The criteria to control the process parameters, to achieve a healthy bead geometry. This study has developed mathematical models and algorithms to predict or control the bead geometry in GMA fillet welding process.

An Experimental Study on Mathematical Model to Predict Bead Width in GMA Weldment (GMA 용접부의 비드폭 예측을 위한 수학적 모델에 관한 실험적 연구)

  • Kim, Ill Soo;Park, Min Ho;Kim, Hak Hyoung;Lee, Jong Pyo;Park, Cheol Kyun;Shim, Ji Yeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.209-217
    • /
    • 2015
  • Generally welding is one of the most important processes to have a strong influence on the quality and productivity from a manufacture-based industry such as shipbuilding, automotive and machinery. The GMA(Gas Metal Arc) welding process involves large number of interdependent welding parameters which may affect product quality, productivity and cost effectiveness. To solve such problems, mathematical models are required to select the welding parameters for GMA welding process. In this study, the GMA welding process was studied using the information generated during the welding. The statistical analysis of a generalized regression approach was conducted by the following three methods: Firstly using the mathematical model (linear regression, 2nd regression); Secondly GA(Genetic Algorithm) with intelligent models; And finally using response surface analysis of models to develop the relationships between welding parameters and bead width as welding quality.

A Study on Heat Flow of Laser-Welded Dissimilar Steel Joints with Gap (틈새가 존재하는 이종강 레이저 용접부의 열유동에 관한연구)

  • Yang, Hae-Sug
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.5-15
    • /
    • 2007
  • A welding structures is generally composed of dissimilar steel materials in order to reduce weight cost, and has a gap to fill the welding agent. Also, heat flow analysis should be fulfilled for structure existing of gap to figure out residual stress which is generated after welding. Since mechanical properties of welding structure composed of dissimilar steel is more fragile than mechanical properties of welding structure consisted of same material, heat flow analysis verifying this should be fulfilled as well. Therefore, on this research, heat flow analysis about dissimilar steel weldment consisted of gap existing AISI304 and AISI630 is practiced so that it could be a basic data of research about mechanical properties of gap existing dissimilar steel welding part which is going to be studied later on. During heat flow analysis, heat input model which based on Gaussian profile and using volume heat flux was newly consisted and applied. In addition, for verifying of analysis on this research, gap existing dissimilar steel weldment which had gap of 0.25mm and was welded using Nd-YAG. The welding profile and temperature distribution for weldment during welding was compared to the result which was gotten through heat flow analysis. Both of those results corresponded each other.