• 제목/요약/키워드: Welding cost

검색결과 327건 처리시간 0.024초

DED방식의 적층가공을 통한 금형으로의 응용사례 및 효과 (Effects and Application Cases of Injection Molds by using DED type Additive Manufacturing Process)

  • 김우성;홍명표;김양곤;서창희;이종원;이성희;성지현
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.10-14
    • /
    • 2014
  • Laser aided Direct Metal Tooling(DMT) process is a kind of Additive Manufacturing processes (or 3D-Printing processes), which is developed for using various commercial steel powders such as P20, P21, SUS420, H13, D2 and other non-ferrous metal powders, aluminum alloys, titanium alloys, copper alloys and so on. The DMT process is a versatile process which can be applied to various fields like the mold industry, the medical industry, and the defense industry. Among of them, the application of DMT process to the mold industry is one of the most attractive and practical applications since the conformal cooling channel core of injection molds can be fabricated at the slightly expensive cost by using the hybrid fabrication method of DMT technology compared to the part fabricated with the machining technology. The main objectives of this study are to provide various characteristics of the parts made by DMT process compared to the same parts machined from bulk materials and prove the performance of the injection mold equipped with the conformal cooling channel core which is fabricated by the hybrid method of DMT process.

Ferrite-Bainite dual phase 강의 피로균열진전 특성 평가 (A Study of Fatigue Crack Growth Behaviour for Ferrite-Bainite Dual Phase Steel)

  • 김덕근;조동필;오동진;김명현
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.41-46
    • /
    • 2016
  • With the recent increase in size of ships and offshore structures, there are more demand for thicker plates. As the thickness increases, it is known that fatigue life of the structures decrease. To improve the fatigue life, post weld treatments techniques, such as toe grinding, TIG dressing and hammer peening, are typically employed. However, these techniques require additional construction time and production cost. Therefore, it is of crucial interest steels with longer fatigue crack growth life compared to conventional steels. This study investigates fatigue crack growth rate (FCGR) behaviours of conventional EH36 steel and Ferrite-Bainite dual phase EH36 steel (F-B steel). F-B steel is known to have improved fatigue performance associated with the existence of two different phases. Ferrite-Bainite dual phase microstructures are obtained by special thermo mechanical control process (TMCP). FCGR behaviours are investigated by a series of constant stress-controlled FCGR tests. Considering all test conditions (ambient, low temperature, high stress ratio), it is shown that FCGR of F-B steel is slower than that of conventional EH36 steel. From the tensile tests and impact tests, F-B steel exhibits higher values of strength and impact energy leading to slower FCGR.

시공성 향상을 위한 제4세대 H형강 기둥-보 약축접합부의 개발 및 성능평가 (Development and Performance Evaluation of the Fourth Generation H-section Beam-to-Column Weak Axis Connection for Improving Workability)

  • 김필중;부윤섭;양재근;이은택;김상섭
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.295-304
    • /
    • 2011
  • 국내외적으로 강구조 약축접합부의 접합방법으로는 브라켓타입이 주로 사용되고 있다. 브라켓타입의 약축접합부는 기둥-보접합부를 공장에서 제작한 후, 현장에 운반하여 시공하므로 보이음부가 추가된다. 따라서 보이음부의 설치비용 및 공사기간이 증가되므로 강구조물의 경쟁력이 저하된다. 본 연구에서는 기존의 표준약축접합부를 개선하여 힘의 흐름이 명확하고, 접합상세가 간결하며, 시공성을 향상시킨 신형상 약축접합부를 제안하였다. 실험결과를 통하여 신형상 약축접합부는 기존의 표준약축접합부보다 최대내력이 크게 나타났으며, 또한 연성적으로 거동하는 것으로 나타났다. 여기서 기존의 표준약축접합부는 스칼럽 또는 보이음용접부에서 응력집중으로 인하여 파괴되는 반면에, 신형상 약축접합부는 응력이 집중되는 스칼럽 및 보이음용접부가 없으며, 또한 H형강기둥과 보를 결합하기 위한 용접플레이트의 두께를 자유롭게 조절할 수 있으므로 이러한 차이가 기둥-보접합부의 최대내력 증가 및 연성적 거동에 기여하는 것으로 판단된다.

용융 금속 TSV 충전을 위한 저열팽창계수 SiC 복합 충전 솔더의 개발 (Development of SiC Composite Solder with Low CTE as Filling Material for Molten Metal TSV Filling)

  • 고영기;고용호;방정환;이창우
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.68-73
    • /
    • 2014
  • Among through silicon via (TSV) technologies, for replacing Cu filling method, the method of molten solder filling has been proposed to reduce filling cost and filling time. However, because Sn alloy which has a high coefficient of thermal expansion (CTE) than Cu, CTE mismatch between Si and molten solder induced higher thermal stress than Cu filling method. This thermal stress can deteriorate reliability of TSV by forming defects like void, crack and so on. Therefore, we fabricated SiC composite filling material which had a low CTE for reducing thermal stress in TSV. To add SiC nano particles to molten solder, ball-typed SiC clusters, which were formed with Sn powders and SiC nano particles by ball mill process, put into molten Sn and then, nano particle-dispersed SiC composite filling material was produced. In the case of 1 wt.% of SiC particle, the CTE showed a lowest value which was a $14.8ppm/^{\circ}C$ and this value was lower than CTE of Cu. Up to 1 wt.% of SiC particle, Young's modulus increased as wt.% of SiC particle increased. And also, we observed cross-sectioned TSV which was filled with 1 wt.% of SiC particle and we confirmed a possibility of SiC composite material as a TSV filling material.

Plasma Electrolytic Oxidation in Surface Modification of Metals for Electronics

  • Sharma, Mukesh Kumar;Jang, Youngjoo;Kim, Jongmin;Kim, Hyungtae;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.27-33
    • /
    • 2014
  • This paper presents a brief summary on a relatively new plasma aided electrolytic surface treatment process for light metals. A brief discussion regarding the advantages, principle, process parameters and applications of this process is discussed. The process owes its origin to Sluginov who discovered an arc discharge phenomenon in electrolysis in 1880. A similar process was studied and developed by Markov and coworkers in 1970s who successfully deposited an oxide film on aluminium. Several investigation thereafter lead to the establishment of suitable process parameters for deposition of a crystalline oxide film of more than $100{\mu}m$ thickness on the surface of light metals such as aluminium, titanium and magnesium. This process nowadays goes by several names such as plasma electrolytic oxidation (PEO), micro-arc oxidation (MOA), anodic spark deposition (ASD) etc. Several startups and surface treatment companies have taken up the process and deployed it successfully in a range of products, from military grade rifles to common off road sprockets. However, there are certain limitations to this technology such as the formation of an outer porous oxide layer, especially in case of magnesium which displays a Piling Bedworth ratio of less than one and thus an inherent non protective oxide. This can be treated further but adds to the cost of the process. Overall, it can be said the PEO process offers a better solution than the conventional coating processes. It offers advantages considering the fact that he electrolyte used in PEO process is environmental friendly and the temperature control is not as strict as in case of other surface treatment processes.

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

샤르피 충격시험을 통한 구조용강재의 극한지 적용성 검토 (Evaluation of the Applicability of Structural Steels to Cold Regions by the Charpy Impact Test)

  • 이진형;신현섭;박기태;양승현
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.483-491
    • /
    • 2011
  • 본 연구에서는 구조용강재의 샤르피 충격시험(Charpy Impact Test)을 통해 저온에서의 충격 인성(Impact Toughness) 평가를 실시하여 사용 가능 온도를 파악함으로써 강재의 극한지 적용성을 검토하였다. 본 시험에 사용된 강재는 용접구조용강 중 현재 가장 널리 쓰이는 강종인 SM490B와 TMCP (Thermo-Mechanical Control Process)법에 의해 제조된 고강도 강재인 SM570-TMC이다. 또한, 본 시험결과와의 비교를 위해 남극 세종기지 건설시 사용실적이 있는 일반구조용강인 SS400에 대해서도 시험을 수행하였다. 대부분의 강구조물은 용접에 의해 제작되므로, 강재의 극한지 적용성 검토를 위해 용접시험판을 제작하여 모재(Base Metal), 용접금속(Weld Metal) 및 열양향부(Heat Affected Zone)에 대해서 충격시험을 실시하였다. 단, SS400의 경우에는 용접구조용강재가 아니므로 모재에 대해서 충격시험을 실시하였다. 대상 강재의 샤르피 충격시험을 통해서 저온에서의 충격흡수에너지 값을 구하고 이를 강재의 항복응력에 따른 충격흡수에너지의 기준값과 비교함으로써 강재의 사용온도를 결정하였으며, 이를 통해서 구조용강재의 극한지 적용성을 검토하였다.

H-beam 로봇 절단용 3차원 시뮬레이터의 개발과 이를 이용한 절단 최적화에 관한 연구 (A Study on Development of 3-D Simulator for H-Beam Robot Cutting and Optimization of Cutting Using the Simulator)

  • 박주용;김용욱
    • Journal of Welding and Joining
    • /
    • 제30권4호
    • /
    • pp.44-48
    • /
    • 2012
  • H-beam used for stiffening the upper structure of ocean plant is cut in the various shapes. The cutting process of the H-beam is done manually and requires a long time and high cost. Therefore, automation of H-beam cutting is an important task. This research aims to develop a 3-D simulator to build the automatic H-beam cutting system and to determine the optimal cutting method. The automatic H-beam cutting system composes of 6 robots including 2 cutting robots hang to a crane and 1 conveyer. The appropriate system layout for covering the various sizes and types of H-beam was tested and determined using the simulator. The H-beam cutting system uses a hybrid type of plasma and gas cutting because of special cutting shapes of H-beam. The cutting area of each cutting method should be properly divided according to the size and shape of H-beam to shorten the total cutting time. Additionally the collision between a robot and a robot or a robot and H-beam should be avoided. The optimal cutting method for the shortest cutting time without the collision could be found for the various cutting conditions by use of the simulator. 2 simulation samples shows the availability of the simulator to find the optimal cutting method.

가스압접 이형철근의 기계적 강도 특성 연구 (A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar)

  • Jeon, Juntai
    • 한국재난정보학회 논문집
    • /
    • 제11권4호
    • /
    • pp.520-526
    • /
    • 2015
  • 철근 콘크리트 구조에서 철근의 이음은 불가피하게 사용된다. 최근 들어 철근 콘크리트 구조물에 가장 많이 사용되고 있는 철근 이음에는 겹침 이음, 기계 이음, 그리고 용접 접합 등이 있다. 이중에서 저비용, 건설 현장에서의 실용성, 공사 기간 단축 및 고성능 등의 장점으로 인하여 가스 압접 이음의 효용성이 대두되고 있다. 그러나 가스 압접 이음 과정동안 철근이 열을 받게 되고 이는 접합부 주위에 잔류 응력으로 남아 철근의 피로수명에 영향을 미칠 수 있다. 그러므로 가스 압접 접합부의 명확한 잔류 응력 분석과 가스 압접 후 철근의 하중지지 능력을 확인하기 위한 인장 시험이 수행되어야 한다. 이 연구에서는 공용중인 철근(KS D3504 SD400)에 대하여 3차원 해석을 수행하여 연구 결과 잔류 응력은 상대적으로 작기 때문에 철근의 피로 수명에 영향을 미치지 않으며 인장 실험 결과에서도 가스 압접된 철근의 항복강도가 기준항복강도보다 높게 측정되어 하중 저항 능력도 가스 압접 이음부가 연속된 철근으로서의 거동에 충분히 그 성능을 발휘하는 것으로 나타났다.

고유 변형도법과 리메슁 기술을 접목한 블록의 역세팅 형상 예측기술 (Prediction Technology of Reverse Setting Block Shape with Inherent Strain Method and Re-meshing Technology)

  • 현충민;최한석;박창우;김성훈
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.425-430
    • /
    • 2017
  • In order to reduce the cost of corrections and time needed for the block assembly process, the reverse setting method is applied for a back-heated block to neutralize deck deformation. The proper reverse setting shape for a back-heated block to correct deformation improved the deck flatness, but an excessive amount of reverse setting could inversely affect the flatness of the block. A prediction method was developed for the proper reverse setting shape using a back-heated block, considering the complex geometry of blocks, thickness of the deck plate, and thermal loading conditions such as welding and back-heating. The prediction method was developed by combining the re-meshing technique and inherent strain-based deformation analysis using the finite element method. Because the flatness deviation was decreased until the lower critical point and thereafter it tended to increase again, the optimum value for which the flatness was the best case was selected by repeatedly calculating the predefined reverse setting values. Based on this analysis and the study of the back-heating deformation of large assembly blocks, including the reverse setting shape, the mechanism for selecting the optimum reverse setting value was identified. The developed method was applied to the actual blocks of a ship, and it was confirmed that the flatness of the block was improved. It is concluded that the developed prediction method can be used to predict the optimum reverse setting shape value of a ship's block, which will reduce the cost of corrections in the construction stage.