• Title/Summary/Keyword: Welding cost

Search Result 327, Processing Time 0.024 seconds

The Application of Narrow-Gap Welding Process for SA 106 Gr.C in Nuclear Power Plant (원전 배관용 SA 106 Gr.C의 협개자동용접 적용에 관한 연구)

  • Woo, Seung-Wan;Kwon, Jae-Do;Lee, Choon-Yeol;Kang, Suk-Chull;Shin, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.96-101
    • /
    • 2004
  • Conventionally, SMAW process was applied to join pipes of RCL, which caused lot of loss in time and cost due to excessive heat input and defects in joining section. Recently, narrow-gap welding(NGW) process was introduced to overcome the disadvantages of SMAW. However, the application of NGW to nuclear power plant is not yet common because safety of NGW process is not proven. In present paper, the welded coupons are made of carbon steel. They are manufactured under different processes; general welding(GW), post-weld heat treatment(PWHT) after GW, repair welding after GW and PWHT with repair welding after GW in carbon steel. Performed are various mechanical tests investigation of microstructure, hardness test, tensile test at room and high temperature, bending test, impact test and J-R test. It is verified that the mechanical properties of carbon steel are greatly changed after repair welding process due to applied heat flux, and that the effect of PWHT is beneficial.

  • PDF

Amount of Spatter in Arc Welding for High-Strength Galvanized Steel According to Shielding Gas Composition (고강도 아연도금 강판의 아크 용접시 보호가스의 비율에 따른 스패터량에 대한 고찰)

  • Jeong, Young-Cheol;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • The need for high-strength galvanized steel has recently increased because of the increased number of car consumers who want improved efficiency and exterior quality. High-strength galvanized steel with high corrosion resistance improves the durability of products and exterior quality. Furthermore, the gilt of zinc does not come off during machining because of the fine adhesive property of zinc. When these are welded, zinc has a lower melting temperature than iron, so zinc is more quickly vaporized than iron. Vaporized zinc can stick to electrodes, which increases spatter in welding transportation. Created spatter can enter the molten pool and develop into inner defects or blowholes and pits. Scattered spatter sticks to the product, which leads to the secondary cost of spatter removal. Therefore, in this study, comparisons of amounts of spatter generated are conducted according to the composition of shielding gas in the MIG and CMT processes to find optimal welding parameters.

Development of the Two-piece Aluminum Wheels Using the Friction Stir Welding (마찰교반용접법을 이용한 2피스 알루미늄 휠의 개발)

  • Choi, In-Young;Kang, Young-June;Kim, Andrey;Ahn, Kyu-Saeng
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.700-707
    • /
    • 2013
  • Owing to high oil prices and environmental issues, the automobile industry has conducted considerable research and made large investments to manufacture a high-efficiency automobiles. In the case of automobile wheels in which a lightweight material is used to increase the fuel efficiency a mold is used to increase the production efficiency; however, the use of the molding method for this purpose is very expensive. Therefore an automobile wheel consists of two parts. In this study a two-piece automobile wheel is manufactured by the friction stir welding(FSW) of Al6061-T6 to reduce the manufacturing cost and process complexity. The FSW welding tool geometry and rotational speed, and the feed rate are key factors that significantly affect the weld strength. Therefore tensile tests were conducted on specimens produced using various welding conditions, and the optimal FSW welding conditions were applied to manufacture aluminum wheels. To ensure reliability, prototype aluminum wheels were manufactured and their mechanical reliability and safety were evaluated using a durability test, fatigue durability test, and impact test. Through this study, aluminum wheel production was made possible using the FSW method.

A Study on the Prediction of Bead Geometry for Lab Joint Fillet Welds Using Sensitivity Analysis (민감도 분석을 이용한 겹치기 필릿용접부 비드형상 예측에 관한 연구)

  • Jeong, Jae-Won;Kim, Ill-Soo;Kim, Hak-Hyoung;Kim, In-Ju;Bang, Hong-In
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.49-55
    • /
    • 2008
  • Arc welding process is one of the most important technologies to join metal plates. Robotic welding offers the reduced manufacturing cost sought, but its widespread use demands a means of sensing and correcting for inaccuracies in the part, the fixturing and the robot. A number of problems that need to be addressed in robotic arc welding processes include sensing, joint tracking, and lack of adequate models for process parameter prediction and quality control. Problems with parameter settings and quality control occur frequently in the GMA(Gas Metal Arc) welding process due to the large number of interactive process parameters that must be set and accurately controlled. The objectives of this paper are to realize the mapping characteristics of bead width using a sensitivity analysis and develop the neural network and multiple regression method, and finally select the most accurate model in order to control the weld quality(bead width) for fillet welding. The experimental results show that the proposed neural network estimator can predict bead width with reasonable accuracy, and guarantee the uniform weld quality.

Ship block assembly sequence planning considering productivity and welding deformation

  • Kang, Minseok;Seo, Jeongyeon;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • The determination of assembly sequence in general mechanical assemblies plays an important role in terms of manufacturing cost, duration and quality. In the production of ships and offshore plants, the consideration of productivity factors and welding deformation is crucial in determining the optimal assembly sequence. In shipbuilding and offshore industries, most assembly sequence planning has been done according to engineers' decisions based on extensive experience. This may result in error-prone planning and sub-optimal sequence, especially when dealing with unfamiliar block assemblies composed of dozens of parts. This paper presents an assembly sequence planning method for block assemblies. The proposed method basically considers geometric characteristics of blocks to determine feasible assembly sequences, as well as assembly process and productivity factors. Then the assembly sequence with minimal welding deformation is selected based on simplified welding distortion analysis. The method is validated using an asymmetric assembly model and the results indicate that it is capable of generating an optimal assembly sequence.

Optimization of tube-to-bar dissimilar FRW of hydraulic valve spool steels and the weld strength properties and its AE evaluation (유공압 밸브 스풀용 강재의 관 대 봉 이종재 마찰용접의 최적화와 용접강도특성 및 AE평가)

  • 오세규;김현필;장홍근;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.24-35
    • /
    • 1997
  • The hydraulic or pneumatic valve spools become essential as the important components on the production of automatic hydraulic or pneumatic as mechanical industry has been rapidly developed. The machining precision is in necessity for manufacturing the valve spools. They could be unstable in the quality by the conventional are welding. And also they have a lot of technical problems in manufacturing because their shapes are generally small. By the precision casting process such as lost wax process, the production cost may be increased. But by the friction welding technique, they will be able to be manufactured without such problems. This paper deals with the development of dissimilar friction welding optimization for the hydraulic or pneumatic valve spool by friction welding and a new approach of on real-time qualify evaluation by AE techniques.

  • PDF

Welding Characteristics of Aluminized Steel Sheet by Nd:YAG Laser(II) - Behavior of Al element in the weld - (Nd:YAG 레이저를 이용한 알루미늄도금강판의 용접성(II) - 용접부내 알루미늄의 거동 -)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Ki-Chol
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.72-78
    • /
    • 2007
  • Aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. It has wide applications, owing to its low cost and excellent performance, in the petrochemical industry, electric power and other energy conversion systems, etc and has attracted the attention of many investigators. But the welding of aluminized steel sheet has a problem of decreasing tensile-shear strength, caused by mixed Al in the weld. This study investigated behavior of Al and its structural properties to resolve this problem. Several analysis equipment(SEM, EDX, EPMA) were used to investigate Al element in the weld. Also microhardness tester and TEM equipment were used to find the intermetallic compound. As a result of this study, Al-rich zones existed in the weld and Fe-Al intermetallic compounds were found in these zones. At the same time, the weldability of aluminized stainless steel sheet was investigated and compared with that of aluminized steel sheet. Although there is a difference between the base metal of the low carbon steel and stainless steel, it is interpreted that a behavior of Al element in the weld is similar.

Fast laser welding with scanner on the joint between AZ31 thin sheet and die-casted AZ91D frame for smart phone application (스캐너를 이용한 AZ31 극박판재와 AZ91D 다이캐스팅 프레임의 고속레이저용접)

  • Lee, Mok-Young;Seo, Min-Hong
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • High welding speed and narrow weld seam are favorable for welding of magnesium alloy. Magnesium alloy is recommended for the smart frame because it has several advantages such as low density, high thermal conductivity, EMI shielding capability and good cast ability. This study is for the assembly welding of the magnesium smart frame with high productivity, good performance and low cost. The window for battery on AZ91D frame produced by die-casting was prepared by CNC machining. Corresponding AZ31 blank of 0.2mm thickness was prepared by die-blanking cut. All system set was fixed at the stationary bed but the laser beam was manipulated by scanner up-to 1,000mm/s speed. The weld joint between AZ31 sheet and AZ91D frame was welded by fiber laser on 850~1,000W output power. The joint showed penetration enough but some humping bead. The distortion by the weld heat was almost free because of the quick dissipation of the heat by small beam size and fast welding. Consequently, the thinner magnesium foil was assembled successfully to the magnesium frame of mobile phone.

Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.235-241
    • /
    • 2000
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance resulting from time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to solve the existing problems, and calibration chamber tests were performed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new method increased bearing capacity, and decreased the installation cost and period for long steel pipe piles compared with existing methods.

  • PDF

Influence on properties of base metal after elimination of lifting-lug member in a dissimilar welding between steel base and steel lifting lug

  • Park, Jeongung;An, Gyubaek;Lee, Haewoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.858-864
    • /
    • 2019
  • The increasing demands of lifting lugs can be attributed to the rapid advancement of shipbuilding and offshore-structure production technologies and an exponential increase in the size of the block units of ship structures. Therefore, to ensure safety during the transportation and turnover of large blocks, it is important to determine the structural integrity and position of lifting lugs. However, because the manufacturing cost and availability of lugs are important considerations, low cost and easily obtainable steel compositions of grades different from those of the blocks are often used as alternatives. The purpose of this study is to investigate the effect of a lifting-lug metal on the physical properties of a base metal in a dissimilar welding between the base metal and lifting lug. The effect was evaluated by observing the metal microstructures and determining the hardness and dilution values on the cross-sectional surface of the lifting lug. According to the results of the metal microstructures, impact, hardness, and emission spectrochemical analysis at the surface from where the lug was removed confirmed that the chemical composition of the lifting-lug metal did not influence the physical properties of the base metal.