• Title/Summary/Keyword: Welding cost

Search Result 327, Processing Time 0.027 seconds

A Study on Development of the Optimization Algorithms to Find the Seam Tracking (용접선 추적을 위한 최적화 알고리즘 개발에 관한 연구)

  • Jin, Byeong-Ju;Lee, Jong-Pyo;Park, Min-Ho;Kim, Do-Hyeong;Wu, Qian-Qian;Kim, Il-Soo;Son, Joon-Sik
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The Gas Metal Arc(GMA) welding, called Metal Inert Gas(MIG) welding, has been an important component in manufacturing industries. A key technology for robotic welding processes is seam tracking system, which is critical to improve the welding quality and welding capacities. The objectives of this study were to develop the intelligent and cost-effective algorithms for image processing in GMA welding which based on the laser vision sensor. Welding images were captured from the CCD camera and then processed by the proposed algorithm to track the weld joint location. The proposed algorithms that commonly used at the present stage were verified and compared to obtain the optimal one for each step in image processing. Finally, validity of the proposed algorithms was examined by using weld seam images obtained with different welding environments for image processing. The results proved that the proposed algorithm was quite excellent in getting rid of the variable noises to extract the feature points and centerline for seam tracking in GMA welding and could be employed for general industrial application.

An Experimental Study on Optimizing for Tandem Gas Metal Arc Welding Process (탄뎀 가스메탈아크 용접공정의 최적화에 관한 실험적 연구)

  • Lee, Jongpyo;Kim, Illsoo;Lee, Jihye;Park, Minho;Kim, Youngsoo;Park, Cheolkyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.22-28
    • /
    • 2014
  • To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develope curve equation for predicting the optimized process parameters and quality characteristics by analyzing the S/N ratio. The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process.

A Study on Bead Geometry Prediction the GMA Fillet Welding using Genetic Algorithm (유전자 알고리즘을 이용한 GMA 필릿 용접 비드형상 예측에 관한 연구)

  • Kim, Young-Su;Kim, Ill-Soo;Lee, Ji-Hye;Jung, Sung-Myoung;Lee, Jong-Pyo;Park, Min-Ho;Chand, Reenal Ritesh
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.126-132
    • /
    • 2012
  • The GMA welding process involves large number of interdependent variables which may affect product quality, productivity and cost effectiveness. The relationships between process parameters for a fillet joint and bead geometry are complex because a number of process parameters are involved. To make the automated GMA welding, a method that predicts bead geometry and accomplishes the desired mechanical properties of the weldment should be developed. The developed method should also cover a wide range of material thicknesses and be applicable for all welding position. For the automatic welding system, the data must be available in the form of mathematical equations. In this study a new intelligent model with genetic algorithm has been proposed to investigate interrelationships between welding parameters and bead geometry for the automated GMA welding process. Through the developed model, the correlation between process parameters and bead geometry obtained from the actual experimental results, predicts that data did not show much of a difference, which means that it is quite suitable for the developed genetic algorithm. Progress to be able to control the process parameters in order to obtain the desired bead shape, as well as the systematic study of the genetic algorithm was developed on the basis of the data obtained through the experiments in this study can be applied. In addition, the developed genetic algorithm has the ability to predict the bead shape of the experimental results with satisfactory accuracy.

Prediction of the Top-bead width of Tandem GMA Welding Processes Using the STACO Model (STACO 모델을 이용한 탄템 GMA 용접공정의 표면비드 폭 예측)

  • Lee, Jong Pyo;Park, Min Ho;Kim, Do Hyeong;Jin, Byeong Ju;Son, Joon Sik;Kang, Bong Yong;Shim, Ji Yeon;Kim, Ill Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Tandem arc welding is a guarantor for high efficiency and cost saving since the quantity of wire which is deposited in the welding is approximated 30% greater that in conventional welding. The welding process is now being successfully applied in many industries. However, in the case of tandem arc welding, good quality and high productivity should depend on the welding parameters. Therefore, an intelligent algorithms for the automatic tandem arc welding process has been necessarily required. In this study, a predictive model based on the neural network by using the data acquired during tandem gas metal arc (GMA) welding process has been developed. To verify the reliability of the developed predictive model, a mutual comparison with the surface of the top-bead width obtained from actual experiments has been analyzed.

An Experiment Study for S/N Ratio of Bead Geometry for Guaranteeing the Welding Quality in Bellows Weld Joint (벨로우즈 용접부의 품질확보를 위한 비드형상 S/N비에 관한 실험적 연구)

  • Lee, Jong-Pyo;Kim, Ill-Soo;Park, Min-Ho;Jin, Byeong-Ju;Kim, In-Ju;Kim, Ji-Sun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • The automatic welding systems, have received much attention in recent years, because they are highly suitable not only to increase the quality and productivity, but also to decrease manufacturing time and cost for a given product. Automatic welding work in semiconductor or space industry to be carried out in pipe line and butt joint mostly and plasma arc welding(PAW) is actively applied. To get the desired quality welds in automated welding system is challenging, a mathematical model is needed that has complete control over the relevant process parameters in order to obtain the required mechanical properties. However, In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. Therefore, this paper investigates the interaction between the welding parameters and mechanical properties for predicting the weld bead geometry by analyzing the S/N ratio.

The Comparison of the Thermal and Mechanical Characteristic in Butt Joint for Ship Structure Thick Plate AH32 Steel by SAW & Hybrid(CO2 Laser+MIG)Welding (조선용 후판 AH32 강에 대한 SAW 및 Hybrid(CO2 Laser+MIG) 맞대기 용접부의 열 및 역학적 특성 비교)

  • Bang, Han-Sur;Oh, Chong-In;Bang, Hee-Seon;Ro, Chan-Seung;Lee, Yoon-Ki;Bong, Hyun-Soo;Lee, Jeong-Soo
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper concentrate on the comparison of the thermal and mechanical characteristics in Butt joint of ship structure AH32 steel by using hybrid welding and conventional SAW. For this purpose, fundamental welding phenomena of hybrid process using $CO_2$ Laser and MIG is investigated by the experiments and characteristics of thermal and welding residual stress distribution of welded joint in SAW and hybrid welding are understood from the result of FE numerical simulation and experimental values. From the result of this study, it is understood that Laser-MIG hybrid welding have high potential, make substantial saving of time and manufacturing cost and may proves its self robust in the butt joining of thick AH32 steel ship structural plate in the near future.

A Study on the Control of the Welding Quality Using a Infrared sensor (적외선센서를 이용한 용접품질 제어에 관한 연구)

  • Kim I.S.;Son S.J.;Kim I.J.;Kim H.H.;Seo J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.754-758
    • /
    • 2005
  • Optimization of process variables such as arc current, welding voltage and welding speed in terms of the weld characteristics desired is the key step in achieving high quality and improving performance characteristics without increasing the cost. Consequently, incorrect settings of those process variables give rise to deviations in the welding characteristics from the desired bead geometry. Therefore, trainee welders are referred to the tabulated information relating different metal types and thickness as to recommend the desired values of process variables. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. However, it is difficult for the traditional identification methods to provide an accurate model because the optimized welding process is non-linear and time-dependent. In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

A Return Bender Automatic Brazing Welding System for Heat Exchangers (열교환기용 리턴 밴더 자동 브레이징 용접 시스템)

  • Lee, Yong-Joong;Kang, Jin-Kap;Lee, Hyung-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.49-55
    • /
    • 2006
  • In the consideration of the problem occurred by certain return bender brazing welding works that depend only on handworks, the automatization of the whole production line is impossible due to the high dependency of skillful workers. In addition, it is difficult to establish a standardization due to the various heat exchanger model and irregular amount of orders, and the fault reduction is also impossible due to the severe difference in brazing conditions. It is necessary to develop a method, which quantitively analyzes the problem existed in this manual brazing welding of return benders and technically solves that problem, and to lead the improvement of the productivity and cost reduction in order to increase the business competitive power. Then, this will contribute the technical development of automatic welding for Korea's heat exchanger businesses. Thus, this study develops an automatic technology, which automatically controls the flame strength using digital control methods, for various models and produces a sample model. It is possible to increase the productivity and produce uniformed and qualified products by solving the problem existed in manual processes using the developed automatic return bender brazing system. In addition, the brazing condition can be automatically controlled according to the model and line speed, and such an economical operation can reduce the production cost. The developed system is expected to future applications not only heat exchangers in the field of refrigeration and air conditioning, but also other various industrial fields that apply heat exchangers, such as car and boiler industries.

  • PDF

A Study on the Spot Welding and Fatigue Design of High Strength Steel Sheets for Light Weight Vehicle Body (경량 차체용 고장력 강판의 Spot 용접과 피로설계에 관한 연구)

  • Heo, Jeong-Beom;Bae, Dong-Ho;Yoon, Chi-Sang;Kwon, Soon-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The recent tendency in the automobile industries is toward light weighting vehicle body to improve the problems by environmental pollution as well as improving fuel cost. The effective way to reduce the weight of vehicle body seems to be application of new materials for body structure and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheet (for example, 301L and 304L), TRIP steel and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life design criteria of body structure, it is important and require condition to assess spot weldability of them and fatigue strength of spot welded lap joints which were fabricated under optimized spot welding condition. And, recently, a new issue in the design of the spot welded structure is to predict economically fatigue design criterion without additional fatigue tests. In general, for fatigue design of the spot-welded thin sheet structure, additional fatigue tests according to the welding condition, material, joint type, and fatigue loading condition are generally required. This indicates that much cost and time for it should be consumed. Therefore, in this paper, the maximum stresses at nugget edge of spot weld were calculated through nonlinear finite element analysis first. And next, obtained the ${\Delta}P-N_{f}$ relation through the actual fatigue tests on spot welded lap joints of similar and dissimilar high strength steel sheets. And then, the ${\Delta}P-N_{f}$ relation was rearranged in the ${\Delta}{\sigma}-N_{f}$ relation. From this ${\Delta}{\sigma}-N_{f}$ relation, developed the fatigue design technology for spot welded lap joints of them welded using the optimized welding conditions.

  • PDF

Lateral Behavior and Joint Stability of Non-Welding Composite Pile (무용접 복합말뚝 수평거동특성 및 연결부 안정성 평가)

  • Ko, Jun-Young;Shin, Yun-Sup;Jeong, Sang-Seom;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.108-118
    • /
    • 2009
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile is frequently to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in engineering field, steel pile is highly used due to its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is to examine the composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile A non welding connection method is applied to this composite pile. This study had step of comparison with the result of numerical analysis after analyzing the result of field test. Numerical analysis is the process of analyzing lateral behavior of non welding composite pile. Moreover, detailed analysis was implemented in order to evaluate joint stability. As a result of the analysis, we could interpret that the stability of the connection part is ensured as seeing the smaller internal stress than approved internal stress. Based on this study, we analyzed lateral behavior of non welding composite pile, which ensured the stability of connection part.

  • PDF