• Title/Summary/Keyword: Welding Wire

Search Result 332, Processing Time 0.029 seconds

Development of Process for High Deposited Metal Melting Efficiency in TIG Welding Using Filler Wire (필러와이어를 쓰는 TIG용접에서 용착금속의 높은 용융효율을 얻기 위한 공정개발)

  • Shin, Hee-Seop;Ham, Hyo-Sik;Seo, Ji-Seuk;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.41-41
    • /
    • 2010
  • 에어컨용 냉매 압축기, 냉장고용 냉매압축기 및 자동차 샷시 부품들은 주로 겹치기 필릿용접을 GMAW 으로 실시하고 있다. 그러나 용접 시 스패터 발생으로 인한 추가공수가 요구되며 작업환경 또한 열악한 실정이다. 따라서 저가의 고생산이면서 용접비드의 외관이 미려하고 스패터, 소음 그리고 Fume 이 발생되지 않는 청정한 TIG 용접이 있지만, 용접속도가 수십 cpm 이하로 제한되어 생산성이 낮다는 기술적 모순을 가지고 있다. TIG 용접에서 생산성을 증가시키기 위해 모재와 와이어를 고속 용융 시키려면 전류를 높여 입열량을 증가시켜야 하지만, 증가된 전류로 인하여 상승된 아크력이 험핑비드와 언더컷이 발생되는 물리적 모순을 가진다. 또한 필러와이어를 사용한 기존의 TIG 용접에서 필러 와이어는 주로 원형 단면 와이어를 사용하게 되는데 와이어의 직경이 증가함에 따라 비표면적은 감소하여 용융효율이 낮아지므로 $\Phi$1.2 이하의 필러와이어를 송급하여 용접하였다. 그러나 요구되는 용착량이 큰 경우 필러 와이어를 고속으로 송급하게 되는데 이 경우 필러 와이어 용융이 곤란하거나 송급상의 문제가 자주 생겨 용접속도를 고속으로 하기 곤란하였다. 따라서 필러와이어를 사용한 TIG 용접에서 용착금속의 용융효율을 높게 함으로서 전류를 크게 증가시키지 않으면서도 용접속도를 높일 수 있는 용접 공정개발이 필요한 실정이다. 본 연구에서는 비표면적을 증가시켜 용착금속의 높은 용융효율을 얻을 수 있도록 개발된 와이어와 기존의 $\Phi$3.2 일반와이어 및 를 이용하여 BOP TIG 용접에 비교 실험하였으며, 개발된 와이어와 기존의 $\Phi$1.2 필러와이어를 이용하여 필릿용접부에 적용 실험하여 비교하였다. 그 결과 개발된 와이어의 경우 적절한 비드를 형성하였으나 3.2 일반와이어의 경우 과도한 볼록비드와 불용착부의 문제가 발생하였고, 필릿용접 비교실험에서는 각각 200cpm과 50cpm에서 적절한 비드가 형성되어 더 높은 용착금속 용융효율을 얻을 수 있었다.

  • PDF

Effects of Fluorides in the Flux Cored Wire on the Oxygen Content of Weld Metal (플럭스 코어드 와이어의 불화물 종류에 따른 용접금속 산소량의 변화)

  • Cha, Joo-hyeon;Bang, Kook-soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.615-619
    • /
    • 2019
  • Various fluorides, i.e., CaF2, Na3AlF6, K2SiF6, MnF3, MgF2, were added to the flux cored wire, and their effects on the oxygen content of the weld metal were investigated. The investigation showed that the oxygen content of weld metal was not influenced by the type of metallic elements in the fluoride; rather, it was influenced by the stability of the arc during welding. While the wire containing MgF2 showed the most stable arc and the least amount of oxygen in the weld metal, the wire containing MnF3 showed the least stable arc and the greatest amount of oxygen. Since the deoxidation of the weld metal was not affected by the deoxidation elements, such as Ca and Mg, it was possible to predict the oxygen content of the weld metal by the equilibrium Si-Mn deoxidation thermodynamic model.

The Recycling Technology for Aged Aluminum Wire in Overhead Conductor (폐가공송전선 Al선재 재활용 기술개발)

  • Kim, Shang-Shu;Ku, Jae-Kwan;Lee, Young-Ho;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.555-562
    • /
    • 2013
  • The new recycling technology for aged aluminum wires in overhead conductor has been carried out. The authors are attempting to develop remanufacturing method for them for more effective way of recycling in stead of its conventional remelting process. The new recycling technology for aged aluminum wire in overhead conductor was composed of four steps in different develop process, destranding process for conductor, surface cleaning process, welding process and drawing process for aluminum wire. This paper investigates the properties during recycle process of aged aluminum wire. The results of microscopic analysis and mechanical properties were discussed to underscore recycling aluminum wire. Various graphs are presented accompanied by discussion about their relevance on the process. In conclusion, we confirmed the possibility of remanufacturing technique by using new process.

Prediction of the Top-bead width of Tandem GMA Welding Processes Using the STACO Model (STACO 모델을 이용한 탄템 GMA 용접공정의 표면비드 폭 예측)

  • Lee, Jong Pyo;Park, Min Ho;Kim, Do Hyeong;Jin, Byeong Ju;Son, Joon Sik;Kang, Bong Yong;Shim, Ji Yeon;Kim, Ill Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Tandem arc welding is a guarantor for high efficiency and cost saving since the quantity of wire which is deposited in the welding is approximated 30% greater that in conventional welding. The welding process is now being successfully applied in many industries. However, in the case of tandem arc welding, good quality and high productivity should depend on the welding parameters. Therefore, an intelligent algorithms for the automatic tandem arc welding process has been necessarily required. In this study, a predictive model based on the neural network by using the data acquired during tandem gas metal arc (GMA) welding process has been developed. To verify the reliability of the developed predictive model, a mutual comparison with the surface of the top-bead width obtained from actual experiments has been analyzed.

AUTOMATIC MULTITORCH WELDING SYSTEM WITH HIGH SPEED

  • Moon, H.S;Kim, J.S.;Jung, M.Y.;Kweon, H.J.;Kim, H.S.;Youn, J.G.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.320-323
    • /
    • 2002
  • This paper presents a new generation of system for pressure vessel and shipbuilding. Typical pressure vessel and ship building weld joint preparations are either traditional V, butt, fillet grooves or have narrow or semi narrow gap profiles. The fillet and U groove are prevalently used in heavy industries and shipbuilding to melt and join the parts. Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be many hours. Although SAW and FCAW are normally a mechanized process, pressure vessel and ship structures welding up to now have usually been controlled by a full time operator. The operator has typically been responsible for positioning each individual weld run, for setting weld process parameters, for maintaining flux and wire levels, for removing slag and so on. The aim of the system is to develop a high speed welding system with multitorch for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. To achieve this, a laser vision sensor, a rotating torch and an image processing algorithm have been made. Also, the multitorch welding system can be applicable for the fine grained steel because of the high welding speed and lower heat input compare to a conventional welding process.

  • PDF

Formation of Fe-Al Intermetallic Compound in GMAW Overlay (GMAW오버레이의 Fe-Al 금속간화합물의 형성)

  • 김병수;박경채;조상흠
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.240-241
    • /
    • 2003
  • The iron aluminides have been among the most widely studied intermetallics because of their low cost, low density, good wear resistance, ease of fabrication and resistance to oxidation and corrosion. In this study, weld overlay was performed with JIS-YGW11 and A14043 wire on the base metal.

  • PDF

Relation between Arc Phenomena and Spattering Ratio of Flux Cored Arc Welding with 100% $CO_2$ Shielding gas (플럭스 코어드 아크 용접의 아크현상과 스패터 발생량과의 관계)

  • S.W. Kang;D.S. Um;E.S. Oh;D.S. You
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.65-75
    • /
    • 1998
  • The $CO_2$ welding with 100% $CO_2$ gas is commonly used because of its cost and efficiency. Arc phenomena and spattering ratio of the $CO_2$ welding are influenced by various factors such as chemical compositions of welding wire, shielding gas, welding condition and welding power source etc.. Spattering ratio is predominantly influenced by the welding condition which determines a droplet transfer rode. In this study, arc phenomena and spattering ratio are investigated by using two type of FCW(titania type, semi-metal type). Then, the welding quality and optimum welding condition can be selected. From this study, the following results ware obtained; 1) In low current range(140A), FCW up to welding voltage(22V) resulted in a typical short circuit transfer, increase of spattering ratio and growth of spatter diameter. 2) In high current range(320A), the arc stability in titania FCW of a typical globular transfer is better than that of semi-metal FCW.

  • PDF

High-Speed BLDC Motor Design for Suction Fan and Impact on the Loss caused by Core Welding

  • Hong, Hyun-Seok;Kim, In-Gun;Lee, Ho-Joon;Go, Sung-Chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper deals with the effects of welding, which is done to fix the stator stack, on a motor in case of fabricating a prototype motor that is manufactured in a small quantity. In the case of a small motor, the stator is designed and fabricated with the segmented core as a way to raise the fill factor of winding wire to the utmost within a limited size. In case of fabrication by welding both inside and outside of the stator in order to fix the segmented-core stator, the effects of stack are ignored, and the eddy current loss occurs. This paper performed the no-load test on an IPM-type BLDC motor for driving the suction fan of a vacuum cleaner, which was manufactured by using a segmented-core stator. As a result of the test, it was found that input power more than expected was supplied. To analyze the effects of welding by using the finite element analysis method and verify them experimentally, a stator was re-manufactured by bonding, and input power supplied during the no-load test was compared.

Effect of Flux Composition on Weld Metal Toughness and Workability in Submerged Aye Welding with 60kgf/$\textrm{mm}^2$ Grade C-Mo Type Wires (60kgf/$\textrm{mm}^2$급 C-MO계 와이어를 사용한 서브머지드 아크 용접금속 인성 및 작업성에 미치는 플럭스 조성의 영향)

  • 방국수;안영호
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.93-100
    • /
    • 1996
  • Effect of a flux composition on weld metal toughness in submerged arc welding with 60kgf/$\textrm{mm}^2$ grade C-Mo type wires was investigated and interpreted in terms of weld metal microstructure and hardenability. Flux workability was also studied by characterizing a weld bead profile. Compared to other weld metals, .weld metal used alumina basic flux with nickel showed lowest oxygen content, highest hardenability and the most acicular ferrite. The highest impact toughness of that weld metal, however, was attributed to the tough matrix due to the nickel rather than to the larger amount of acicular ferrite. Manganese silicate flux had better workability than alumina basic flux, showing broader welding conditions resulting in a depth-to-width ratio of 0.5. The composition of oxides in the weld metal was dependent on the flux composition, showing MnO-SiO$_2$-TiO in manganese silicate flux and MnO-SiO$_2$-Al$_2$O$_3$-TiO in alumina basic flux. MnO-SiO$_2$composition in both oxides was similar to a tephroite.

  • PDF

Control Gas Metal Arc Welding System Using Decentralized Method

  • Ngo, Manh Dung;Phuong, Nguyen Thanh;Duy, Vo Hoang;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.60-66
    • /
    • 2006
  • This paper presents a new way achieving better welding results of gas mental arc welding (GMAW) system by using a decentralized control method. In this paper, the GMAW system is considered as two separated subsystems such as a power source of GMAW (PS-GMAW) and a wire feed unit (WFU). The mathematical modeling of PS-GMAW and WFU are presented. Based on the modeling of two subsystems, a sliding mode controller and a proportional controller is designed for controlling the PS-GMAW and the WFU, respectively. Two decentralized controllers have to be designed to control the out welding arc of the GMAW to be stable and tracking the setting value accurately during the welding process. Furthermore, the simulation and experimental results are shown to prove the effectiveness of the proposed controllers.

  • PDF