• Title/Summary/Keyword: Welding Spatter

Search Result 129, Processing Time 0.019 seconds

Development of Estimation Model Are Stability Considering Arc Extinction with Multiple Regression Analysis in $CO_2$ Arc Welding ($CO_2$ 아크 용접에 있어서 다중회귀분석에 의한 아크 끊어짐을 고려한 아크 안정성 예측 모델 개발)

  • Gang, Mun-Jin;Lee, Se-Heon;U, Jae-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1885-1898
    • /
    • 2000
  • Welding quality is closely related to the arc state. So, it is very important to estimate the arc state in real time. In the short circuit transfer region of CO2 are welding, the spatter , as it is well known, is mainly generated on an instance of short circuit or on an instance that the are is ignited after short circuit, or on the cases of an instantaneous short circuit. If the short circuit period or the arc time is irregular, the spatter is generated more than it is regular. Thus there is a close relationship of the amount of the spatter generation with the arc stability. In this paper, to develop the index for estimating the arc stability in short circuit transfer range Of CO2 arc welding, the welding current and are voltage waveforms were measured and the spatter generated was captured and measured. The correlation analysis of the measured amount of the spatter with the factors (the components and the standard deviations of the components) was performed, and the factors that have a considerable influence on the spatter generation among all factors were selected. And some cases of models consisted of the factors were presented, and a mathematical index model which can make an estimation the amount of the spatter from these models with multiple regression analysis. Also, it was compared how much the amount of the spatter generated under the selected welding conditions do these index models fit, and the index model to estimate the arc stability which represent the spatter generation most appropriately was developed

Amount of Spatter in Arc Welding for High-Strength Galvanized Steel According to Shielding Gas Composition (고강도 아연도금 강판의 아크 용접시 보호가스의 비율에 따른 스패터량에 대한 고찰)

  • Jeong, Young-Cheol;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • The need for high-strength galvanized steel has recently increased because of the increased number of car consumers who want improved efficiency and exterior quality. High-strength galvanized steel with high corrosion resistance improves the durability of products and exterior quality. Furthermore, the gilt of zinc does not come off during machining because of the fine adhesive property of zinc. When these are welded, zinc has a lower melting temperature than iron, so zinc is more quickly vaporized than iron. Vaporized zinc can stick to electrodes, which increases spatter in welding transportation. Created spatter can enter the molten pool and develop into inner defects or blowholes and pits. Scattered spatter sticks to the product, which leads to the secondary cost of spatter removal. Therefore, in this study, comparisons of amounts of spatter generated are conducted according to the composition of shielding gas in the MIG and CMT processes to find optimal welding parameters.

A study on determining arc stability using weight of spatter (스패터 양을 이용한 아크 안정성 판별에 관한 연구)

  • 강성구;문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.41-48
    • /
    • 1997
  • For analyzing the characteristics of arc welding processes, an algorithm is necessary to determine the metal transfer mode, arc stability and weld quality. In this study, the weight of spatter during welding was selected for determining the arc stability, which is very relevant to the occurrence of spatter. Weld spatter occurs mainly at the moment when the short circuit is formed and also when it is broken causing the arc to restrike. Based on this fact, the arc stability can be determined by finding the suitable parameters of welding current and arc voltage which influence the weight of spatter. Through various welding experiments, the peak current, the arcing time, the short circuit time, the current and its slope at the start of short circuit were found mainly to influence the weight of spatter. For the convenient usage, an index was proposed by combining all these parameters. It was found that the index is very effective for determining the arc stability.

  • PDF

Relationship between Spatter Generation and Waveform Factors in Transitional Condition of $CO_2$ Welding ($CO_2$ 용접의 천이이행 조건에서 스패터 발생과 파형인자와의 관계)

  • 강봉용;이창한;김희진;장희석
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • $CO_2$ gas shielded arc welding has been characterized with its harsh arc compared to Ar-based shielding gases and with its high level of spattere specially in welding current range of 250~300 amperes. In this range of welding current, the metal transfer mode showed to be changed from short circuit to globular with the increase of welding voltage resulting in so-called the transitional mode in which both modes of transfer appeared together. To characterize the transitional mode, the short circuit events were divided into two groups, i.e. normal short circuit (N.S.C) which has short circuit time $(t_s)$ over 2msec and instantaneous short circuit (I.S.C) of $t_s$$\leq$2msec. The experimental results showed that the number of N.S.C decreased almost linearly with the increase of welding voltage and appeared to be not related with spatter generation rate. However I.S.C became to be pronounced in the transitional condition and its number reached the maximum value at around 29.0 volts. Considering the relation with the spatter generation rate, it was found that the number of I.S.C had a very strong correlation with the spatter generation rate of the transitional condition. It was further demonstrated that spatter generation rate decreased quite linearly with the decrease of I.S.C frequency. It implies that I.S.C is the most important waveform factor controlling the spatter generation of the transitional mode, i.e. in the middle range of welding current. Based on these results, It was discussed that in the transitional mode the basic concept of waveform control for suppressing spatter generation would be different from the one applied for typical short circuit transfer mode of low welding current.

  • PDF

Effect of Delay Time Control on the Spatter Generation in $CO_2$ Welding ($CO_2$ 용접에서 스패터 발생에 미치는 지연시간 제어의 영향)

  • 이창한;김희진;강봉용
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.61-68
    • /
    • 1999
  • For the last two decades, waveform control techniques have been successively developed and applied for the inverter welding machines resulting in the substantial reduction of spatter generated in CO₂ welding. One of the constituents commonly involved in those techniques is to delay the instant of current increase to some extent after the initiation of short-circuiting. Although this technique has been known to be quite effective in reducing the spatter generation through the suppression of is instantaneous short circuiting, the delay time necessary for minimum spatter has not been clearly understood. In this study, the control system for varying the delay time was constructed so that the spatter generation rates could be measured over a wide range of delay time, 0.29-2.0 msec. As a result of this study, it was demonstrated that spatter generation rate(SGR) sharply decreased at delay time of 0.6 msec and longer accompanied with the change in characteristics of short circuit mode from the instantaneous short-circuiting(ISC) dominant to normal short-circuiting(NSC) dominant. Another feature that have been found in current waveform of over 0.6msec was the creation of current pulse right after the arc reignition stage. Because of this current pulses weld pool oscillated in wave-like fashion and it looks like to play an important role in developing short circuiting between electrode and weld pool.

  • PDF

Effects of Microstructure and Surface Oil Film on the Welding in Zr Electroplated steel (전기아연도금 강에서 미세조직 및 표면유막이 용접 spatter에 미치는 영향)

  • 최한철;최수찬;김광연;안덕수;김영우
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.13-22
    • /
    • 1997
  • In order to investigate the effects of microstructure Oil film on the welding spatter in Zn electroplated steel, Zn electroplated surface and layer structure with USS-Paddition was observed using XRD, XPS and optical microscopy. Wettability of water drop on the Zn electroplated steel surface was measured using Z.Mei model. Oil absorption test was carried out using Oil pen. Morphology of spot welding and spatter with USS-P addition, applied current, and oil-spray or oil-without was observed using SEM and optical microscopy. Surface morphology of Zn electroplated steel showed finer structure as USS-P content increased. Wettabiliy on the Zn electroplated surface decreased with increasing USS-P content. Size of welding trace increased and spatter occured arround the welding part as applied current increased, whereas spatter disappeared as USS-P content increased and disappeared in case of oil spraying on the Zn electroplated surface.

  • PDF

Development of Waveform Control for Suppressing the Spatter Generation (대전류 $CO_2$ 용접에서 스패터 저감을 위한 파형제어 기법 개발)

  • 김희진;강봉용
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.643-651
    • /
    • 2001
  • A new waveform control technique has been developed for suppressing the spatter generation in the repelled transfer mode of high current $CO_2$ welding. Based on the spatters in repelled transfer, a waveform concept of concept was established in a way to drop the welding current to lower level right before the pendant weld drop detatchment so that the explosion force associating with drop detatchment was decreased. There were several variables to be controlled such as the moment of current drop, the base current and the time of retention at the base current. Either at lower base current or at longer retention time, the more instantaneous shot circuits were int개duced and thus the spatter generation rates were increased. With optimizing the control variables, the amount of spatter generated was decreased by about 30%.

  • PDF

Characteristics of Output Energy and Optical Parameters in Welding of Braun Tubes by Pulsed Nd:YAG Laser (펄스 Nd:YAG 레이저에 의한 브라운관 부품의 용접시 빔의 출력특성과 광학변수)

  • Kim Jong-Do;Ha Seung-Hyup
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.27-37
    • /
    • 2005
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two poles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets.

  • PDF

The Effect of Deoxidizers in a Wire on Spatter Generation in Gas Metal Arc Welding (GMA용접에 있어서 스패터 발생에 미치는 와이어 탈산원소의 영향)

  • 방국수;안영호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.145-150
    • /
    • 1996
  • The variation of spatter generation in gas metal arc welding with welding conditions and wire compositions was investigated and interpreted in terms of arc stability. The transition range from a short circuit mode to a spray mode in the mixed gas welding showed an unstable arc and generated the largest amount of spatters. Titanium reduced spatters only in the globular mode of $CO_2$welding and silicon and manganese showed the same effect The effect of silicon and manganese, however, was no longer seen when titanium was added simultaneously to the wire. It is believed that deoxidizers easily form oxides on the anode and make the arc stable even in DCRP welding. The wires with deoxidizers also showed low short circuit frequency, resulting in the increase of large size spatters.

  • PDF

A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters - (브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.