• Title/Summary/Keyword: Welding Quality Control

Search Result 216, Processing Time 0.025 seconds

Development of Automatic Welding Machine and Weld-Quality Improvement for Automobile Parts (자동차부품 용접자동화장치 개발 및 용접품질 개선에 관한 연구)

  • Kim, Kyo-Hyoung;Lee, Ki-Sul;Lee, Taik-Soon;Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • Low cost automatic welding machine is developed for the purpose of welding process automation of automobile parts with two dimensional welding joints. Developed gantry type machine is equipped with X, Y and roll axis stepping motors, and dirive units units are designed by two phase on drive scheme using shift registers. Control system is constructed by single board microcomputer of Z80A CPU, and also it is equipped with parallel input output ports and counter-timer chips. Linear and circular interpolation of welding head movement is accomplished by employing software digital differential analyzers. It has been shown that contour error of develped system is withi ${\pm}1.0mm$, meaning that the machine is suitable for CO2 arc welding process of automoble parts and is expected it's application to industry.

  • PDF

Evaluation and Process Analysis of the Superalloy Friction Welding for Large Shaft (초내열합금의 대형마찰용접 공정해석 및 평가)

  • Jeong H. S.;Kim Y. H.;Cho J. R.;Park H. C.;Lee N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.301-304
    • /
    • 2004
  • Friction welding was used to weld the turbine wheel and shaft and have a good welding quality. Friction welding was conducted an the two dissimilar material, Nimonic 80A and SNCrW. The control of friction welding process parameter such as flywheel energy, interface temperature, amount of upset have an effect on the mechanical properties of the welded joint. FE simulation can be a useful tool to optimize the weld geometry and process parameters. Flash shape and thickness weld is consistent with the simulated results. Process analysis was performed by the commercial code DEFORM 2D. Mechanical property of weld joints was evaluated by microstructure, chemical component, tensile, impact, hardness test so on.

  • PDF

The domestic development of 60kw Electron Beam Welding System (고정밀 60kW급 전자빔 용접시스템 국산화 개발)

  • 정원희;엄기원;정인철
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • The main characteristic of the Electron Beam Welding technique is its high energy density which produces thin and deep welds with very little distortion. High accelerated electrons, focused in a beam of 0.5 ∼ 2mm diameter, produce narrow welds with deep penetration. The result is a small HAZ as well as a low and uniform distortion which is predictible within very narrow limits. But the small diameter of the EB increases the requirements for the equipment control system for centering the beam on the welding joint in order to avoid any lack of fusion. Therefore, in this paper, we introduce the system developed at our company and the quality of welding zone, the detail function of system.

  • PDF

Introduction of Prediction Method of Welding Deformation by Using Laminated Beam Modeling Theory and Its Application to Railway Rolling Stock

  • Mun, Hyung-Suk;Jang, Chang-Doo
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.175-179
    • /
    • 2009
  • The welding deformation and its prediction method at the HAZ (Heat-Affected Zone) are presented in this paper. The inherent strain method is well known as analytical method to predict welding deformation of large scale welded structure. Depend on the size of welding deformation in welding joints, the fatigue life, the stress concentration factor and the manufacturing quality of welded structure are decided. Many welded joints and its manufacturing control techniques are also required to railway rolling stock and its structural parts such as railway carbody and bogie frame. Proposed methods in this paper focus on the two different the inherent strain area at HAZ. This is main idea of proposed method and it makes more reliable result of welding deformation analysis at the HAZ.

  • PDF

Control of Molten Pool by Physical Force of Bead Former in TIG Welding of Overhead and Inclined-up Position (위보기 및 경사상진자세의 TIG 용접에서 비드 성형기의 물리적 힘에 의한 용융지 제어)

  • Ham, Hyo-Sik;Ha, Jong-Moon;Lee, Byung-Woo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2010
  • Due to excellent weld quality, orbital welding with TIG is widely applied to pipe welding. But concave back bead is formed easily in overhead and inclined-up position of butt orbital welding. It is difficult to find a paper to overcome this problem. In this study, in order to make convex back bead in overhead and inclined-up position of pipe 5G welding, control method of molten pool was actively investigated. Melt run welds were conducted on thickness 4.0mm SS400 with overhead and inclined-up position and was observed the variation of bead shape after welding with the bead former developed. The height of back bead showed the trend of increase as the distance from molten pool to the bead former was decreased. Also, there is no trend in the bead width of front and back as welding position was changed or the distance from molten pool to the bead former was decreased.

The Effects of Welding Process Parameters on Weld bead Width in GMAW Processes (GMAW 공정 중 용접 변수들이 용접 폭에 미치는 영향에 관한 연구)

  • 김일수;권욱현;박창언
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 1996
  • In recent years there has been a significant growth in the use of the automated and/or robotic welding system, carried out as a means of improving productivity and quality, reducing product costs and removing the operator from tedious and potentially hazardous environments. One of the major difficulties with the automated and/or robotic welding process is the inherent lack of mathematical models for determination of suitable welding process parameters. Partial-penetration, single-pass bead-on-plate welds were fabricated in 12mm AS 1204 mild steel flats employing five different welding process parameters. The experimental results were used to develop three empirical equations: curvilinear; polynomial; and linear equations. The results were also employed to find the best mathematical equation under weld bend width to assist in the process control algorithms for the Gas Metal Arc Welding(GMAW) process and to correlate welding process parameters with weld bead width of bead-on-plates deposited. With the help of a standard statistical package program. SAS, multipe regression analysis was undertaken for investigating and modeling the GMAW process, and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

Development of Automated Welding System for Construction: Focused on Robotic Arm Operation for Varying Weave Patterns

  • Doyun Lee;Guang-Yu Nie;Aman Ahmed;Kevin Han
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • Welding is a significant part of the construction industry. Since most high-rise building construction structures rely on a robust metal frame welded together, welding defect can damage welded structures and is critical to safety and quality. Despite its importance and heavy usage in construction, the labor shortage of welders has been a continuous challenge to the construction industry. To deal with the labor shortage, the ultimate goal of this study is to design and develop an automated robotic welding system composed of a welding machine, unmanned ground vehicle (UGV), robotic arm, and visual sensors. This paper proposes and focuses on automated weaving using the robotic arm. For automated welding operation, a microcontroller is used to control the switch and is added to a welding torch by physically modifying the hardware. Varying weave patterns are mathematically programmed. The automated weaving is tested using a brush pen and a ballpoint pen to clearly see the patterns and detect any changes in vertical forces by the arm during weaving. The results show that the weave patterns have sufficiently high consistency and precision to be used in the actual welding. Lastly, actual welding was performed, and the results are presented.

Fast Fourier Transform Analysis of Welding Penetration Depth Using 2 kW CW Nd:YAG Laser Welding Machine

  • Kim, Do-Hyung;Chung, Chin-Man;Baik, Sung-Hoon;Kim, Koung-Suk;Kim, Jin-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.372-376
    • /
    • 2008
  • We report experimental results on the correlations between welding penetration depth and the frequencies of the radiation from the welding pool. Various welding samples such as SUS304, brass, SUS316, etc. have been investigated with 2 kW CW Nd:YAG laser welding machine. The radiation signals from the plume generated by the interactions between the welding sample and laser with respect to the defocusing length was measured with fiber system collecting the plume signal. Analysis of the frequencies by using fast Fourier transform (FFT) shows that the penetration depth is deep as plume signal frequencies are low, shallow penetration depth for high frequencies. Frequencies up to 250 Hz for obtained signals can be analyzed with the discrete FFT. This is the useful method fur closed loop control of the laser power with respect to the welding penetration depth and is used for real time inspection of the welding quality.

Weld pool size estimation of GMAW using IR temperature sensor (GMA 용접공정에서 적외선 온도 센서를 이용한 용융지 크기 예측)

  • 김병만;김영선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1404-1407
    • /
    • 1996
  • A quality monitoring system in butt welding process is proposed to estimate weld pool sizes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to prove the integrity of the weld quality. The monitoring variables used are the surface temperatures measured at three points on the top surface of the weldment. The temperature profile is assumed that it has a gaussian distribution in vertical direction of torch movement and verify this assumption through temperature analysis. A neural network estimator is designed to estimate weld pool size from temperature informations. The experimental results show that the proposed neural network estimator which used gaussian distribution as temperature information can estimate the weld pool sizes accurately than used three point temperatures as temperature information. Considering the change of gap size in butt welding, the experiment were performed on various gap size.

  • PDF

A Case Study of Six Sigma Project for Improving TIP Life Time in a Spot Welding Process (스폿 용접공정의 TIP 수명 향상을 위한 6시그마 프로젝트 사례)

  • Lee, Min-Koo;Kwag, Hyo-Chang
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.1
    • /
    • pp.88-98
    • /
    • 2005
  • This paper considers a six sigma project for improving the TIP life time in a spot welding process. The project follows a disciplined process of five phases: define, measure, analyze, improve, and control. A process map is used to identify process input and output variables. Nine key process input variables are selected by using C&E matrix and FMEA, and finally four vital few input variables are selected from analyze phase. The optimum process conditions of the vital few input variables are jointly obtained by maximizing TIP life time using DOE and alternative selection method.