• Title/Summary/Keyword: Welding Pressure

Search Result 560, Processing Time 0.022 seconds

THE EFFECTS OF HEAT INPUT AND GAS FLOW RATE ON WELD INTEGRITY FOR SLEEVE REPAIR WELDING OF IN-SERVICE GAS PIPELINES

  • Kim, Young-pyo;Kim, Woo-sik;Bani, In-wan;Oh, Kyu-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.390-395
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMA W and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The [mite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

Servo Gun-type Inverter Spot Welding System (서보건 타입 인버터 스폿용접시스템)

  • 김규식;김진우;원충연;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.397-406
    • /
    • 2003
  • Resistance spot welding is widely employed in a manufacturing process. In recent years, the requirement for more sophisticated quality control procedures has been in mass production industries. The requirements for high productivity and better weld qualities have lead to the development of more widely available microcomputer-based control. In this study, the inverter type power source and welding servo gun are developed. As the results, we have some advantages over the previous methods such as pneumatic gun. One of them is that the precise pressure control can be attained during the welding process. In addition, production time and cost can be decreased.

Effect of Process Parameters on Bead Formation in Nd:YAG Laser Welding of Thin Steels (저탄소 박판 강재의 Nd:YAG 레이저 용접부 형성에 미치는 공정변수의 영향)

  • 김기철;허재협
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.317-324
    • /
    • 2001
  • This study deals with high power Nd:YAG laser welding of thin steels for small pressure vessels. Full penetration welding at the overlap joint was performed so as to assure sufficient weld strength. Results showed that mid-depth weld size reduced drastically with increasing the travel speed. Position of focus had little effect on the bead formation even though short focal system was used. However, the shape factor and the bead width had closely related with the position of focus. Based on the microstructural inspection, acceptable weld was obtained when the overlap clearance was controlled up to 20% of the base metal thickness. In the case that the joint contained more clearance than the critical value, both the tensile shear strength and the tear strength were reduced. Results also demonstrated that shielding gases were proved to play a key role as far as the bead formation characteristics was taken into consideration. Blowing dry air through 5mm in diameter nozzle produced narrower bead cross-section than that of argon or nitrogen shielding.

  • PDF

Study on Optimaization of Heating Element Gap in Resistance Welding using Thermoplastic resin (열가소성 수지 저항용접에서 발열체 간격의 최적화에 관한 연구)

  • Yun, Ho-Cheol;Im, Pyo;Im, Jae-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.26-28
    • /
    • 2007
  • This research is concerned with a study of failure strength evaluation on heat element gap at resistance welding. The failure strength of resistance welded joint is changed by welding factor like as current(power level), welding time(total energy), pressure etc. and another heat element factor like as number of element line, element gap etc. Tensile-shear tests were carried out with the single-lap specimen using polypropylene(PP). The failure mechanism and optimization of gap was discussed in order to explain the tensile-shear strength evaluation on heat element gap at resistance welding. Orthogonal array was used by fractional factorial design for efficient experiments.

  • PDF

A study on the influence of the traverse speed on the mechanical strength of friction stir welding A5083 (A5083 마찰교반접합(F.S.W)시 이송속도가 기계적 강도에 미치는 영향에 관한 연구)

  • 성기완;이준형;오세헌;박근형;윤병수;민택기
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.114-116
    • /
    • 2001
  • This study deals with friction stir welding of aluminum alloy(A5083). Welding conditions were applied that revolution 2000rpm, friction pressure 25MPa, angle between stir rod section and plate 4$^{\circ}$, projection pin diameter 4mm, traverse speed 0.5mm/sec, 1.0mm/sec, 1.5mm/sec. The experimental results as follows; 1. Welding beads were superior in traverse speed 1.0mm/sec and it were formed plenty of flash in traverse speed 0.5 mm/sec. Welding beads were rough in traverse speed 1.5mm/sec. 2. The maximum tensile strength was 211MPa in traverse speed 1.0mm/sec, in this case the strength was 85% of A5083 base metal tensile strength.

  • PDF

A Study on the Measurement of Bending Constraint Force of STS304 Thin Plate Using The Load Cell (로드셀을 이용한 STS304 박판용접부의 굽힘구속력과 잔류응력 측정에 관한 연구)

  • Kim, Jae-On;Park, Hee-Sang;Ko, Jun-Bin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.86-93
    • /
    • 2007
  • The restraint force is required for the accurate measurement and analysis to protect weldment from residual stress. Also, this residual stress caused by cracks in weldments is often observed in the weldments of large size nozzles or radial tanks after welding. This paper is preformed to evaluate the welding restraint forces using load cell with STS304 thin plate which is used as the pressure vessel steel in the industry field. As a result, as the welding currents are higher and the welding speeds are more slowly, the magnitude of restraint force in process of the flat plate welding shows to be more large.

Water pressure Test and analysis for Welding Thickness Decision of New Cold-formed Type Concrete Filled Tubular Square Column (조립각형 CFT 기둥의 용접크기 결정을 위한 수압실험 및 해석)

  • Lee, Seong-Hui;Kim, Sun Hee;Kim, Young Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.515-526
    • /
    • 2009
  • There are three main production processes in the manufacture of concrete-filled square steel columns. The first process is known as the 'box-type process' or 'four-seam method,' wherein four beams are welded together at the seams. The second is the 'cold-forming process' or 'two-seam method,' wherein the seams of two channel beams are welded together. The third is the 'pressing process' or 'one-seam method,' wherein a circular column is pressed until it becomes a square column. In calculating the production cost for the making of a steel tube, it is very important to consider the welding process to be used and the desiredthickness of the steel tube, such as a square column that was developed under a new method, formed through the four-seam flare welding method at the center of the steel column width, following the L-shape formation. Certain tests were suggested in this study to evaluate the welding amount of concrete-filled square steel columns. With the parameters of the production method of a square steel column, the thickness of the steel square columns, and the welding amount, six specimens were produced. A structural test and finite-element analysis were conducted to assess the behavior of the steel column according to the water pressure inside the steel columns.

Study on Friction Welding of Torsion Bar Material(1) -Optimization of Friction Welding Technique- (토션 바재의 마찰용접에 관한 연구(I) -마찰용접기술의 최적화에 대하여-)

  • 오세규;이종두
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.101-109
    • /
    • 1990
  • The friction welding has more technical and economic advantages than the other welding processes. As this welding process has the characteristics such as curtailment of production time, materials, cost reduction, etc., it has been widely used in production of various mechanical components which have complex shapes. So, this paper deals with optimizing the friction welding conditions and analyzing various mechanical properties of the friction welded joints of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) The quantitative relation between heating time($t_{1}$, sec) and total upset(U, mm)can be obtained. The empirical formula obtained is ; U = 3.29$t_{1}$ + 1.6 2) The tensile strength($\sigma_{t}$, kgf/$mm^{2}$) of friction welding joints as post weld heat treated(PWHT) depends upon heating time($t_{1}$, sec) quantitatively and the empirical formula obtained is ; $\sigma$= -5.1$t_{1}\;^{2}$+44.90$t_{1}$+45.2 3) It is certain that the optimum condition for friction welded joints of SUP9A steel bars of diameter 14.5mm is, considering on various properties such as tensile strength, torsional strength, impact energy and strain of the joints after PWTH ; n = 2000rpm, $P_{1}$=8kgf/$mm^{2}$, $P_{2}$=20kgf/$mm^{2}$, $t_{1}$=4sec, $t_{2}$=3sec 4) The tensile strength, torsional strength and hardness were increased with the increased with the increasing carbon equivalent, but toughness was decreased.

  • PDF

Friction Welding and AE Characteristics of Magnesium Alloy for Lightweight Ocean Vehicle (해양차량 경량화용 마그네슘합금의 마찰용접 및 AE 특성)

  • Kong, Yu-Sik;Lee, Jin-Kyung;Kang, Dae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, friction welded joints were constructed to investigate the mechanical properties of welded 15-mm diameter solid bars of Mg alloy (AZ31B). The main friction welding parameters were selected to endure reliable quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bonds in the area and heat affected zone (HAZ), and macrostructure investigations. The study reached the following conclusions. The tensile strength of the friction welded materials (271 MPa) was increased to about 100% of the AZ31B base metal (274 MPa) under the condition of a heating time of 1 s. The metal loss increased lineally with an increase in the heating time. The following optimal friction welding conditions were determined: rotating speed (n) = 2000 rpm, heating pressure (HP) = 35 MPa, upsetting pressure (UP) = 70 MPa, heating time (HT) = 1 s, and upsetting time (UT) = 5 s, for a metal loss (Mo) of 10.2 mm. The hardness distribution of the base metal (BM) showed HV55. All of the BM parts showed levels of hardness that were approximately similar to friction welded materials. The weld interface of the friction welded parts was strongly mixed, which showed a well-combined structure of macro-particles without particle growth or any defects. In addition, an acoustic emission (AE) technique was applied to derive the optimum condition for friction welding the Mg alloy nondestructively. The AE count and energy parameters were useful for evaluating the relationship between the tensile strength and AE parameters based on the friction welding conditions.

Application of Acoustic Emission Technique and Friction Welding for Excavator Hose Nipple (굴삭기용 호스 니플의 마찰용접과 음향방출기법의 적용)

  • Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.436-442
    • /
    • 2013
  • Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, the feasibility of industry application was determined by analyzing the mechanical properties of weld region for a specimen of tube-to-tube shape for excavator hose nipple with friction welding, and optimized welding variables were suggested. In order to accomplish this object, friction heating pressure and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. An acoustic emission(AE) technique was applied to evaluate the optimal friction welding conditions nondestructively. AE parameters of accumulative count and event were analyzed in terms of generating trend of AE signals across the full range of friction weld. The typical waveform and frequency spectrum of AE signals which is generated by friction weld were discussed. From this study the optimal welding variables could be suggested as rotating speed of 1300 rpm, friction heating pressure of 15 MPa, and friction heating time of 10 sec. AE event was a useful parameter to estimate the tensile strength of tube-to tube specimen with friction weld.