• Title/Summary/Keyword: Welding Pressure

Search Result 560, Processing Time 0.028 seconds

Prediction of Welding Pressure in the Non Steady State Porthole Die Extrusion of Al7003 Tubes

  • Jo, Hyung-Ho;Lee, Jung-Min;Lee, Seon-Bong;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.36-41
    • /
    • 2003
  • This paper describes a numerical analysis of a non-steady state porthole die extrusion, which is useful for manufacturing long tubes with a hollow section. Materials divided through several portholes are gathered within a chamber and are then welded under high pressure. This weldability classifies the quality of tube products and is affected by process variables and die shapes. However, porthole die extrusion has been executed based on the experience of experts, due to the complicated die assembly and the complexity of metal flow. In order to better assist the design of die and to obtain improvement of productivity, non-steady state 3D FE simulation of porthole die extrusion is required. Therefore, the objective of this study is to analyze the behavior of metal flow and to determine the welding pressure of hot extrusion products under various billet temperatures, bearing length, and tube thickness by FE analysis. The results of FE analysis are compared with those of experiments.

Effect of Be Mixing Ratio on the Characteristics of TIG Welding with High Current and High Speed (대전류 고속 TIG 용접 특성에 미치는 He 혼합비의 영향)

  • Oh Dong-Soo;Kim Yeong-Sik;Cho Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.54-60
    • /
    • 2005
  • Tungsten Inert Gas(TIG) welding is today one of the most popular arc welding process because of its high quality welds and low equipment costs. Even if welding productivity increases with welding speed and current, this strategy is limited by the appearance of defects such as undercut and humping bead due to the depressed molten metal. The purpose of this study investigates the effect of He mixing ratio on the characteristics with high current and speed in TIG welding. The conclusions obtained permit to explain the arc start characteristics quantitatively and the maximum welding speed on stable bead formation with He mixing ratio for high current and speed TIG welding observed in experiments. Also through the relation of the maximum arc pressure and surface depression depth at high current and speed TIG welding, it made clear the mechanism of unstable bead formation.

Welding Characteristics on Heat input Changing of Laser Dissimilar Metals Welding (레이저 이종용접에서의 입열량 변화에 대한 용접특성)

  • Mo Yang-Woo;Shin Byung-Heon;Shin Ho-Jun;Yoo Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding qualify is 1600W of the laser power, 0.85m/min of welding speed and $4{\ell}/min$ of pressure for shielding gas.

Process Optimization for Improving Resistance Welding Quality of Cylindrical Secondary Battery (원통형 이차전지의 저항용접 품질 향상을 위한 공정 최적화)

  • Chung, Ji Sun;Park, Soon Seo;Kim, Jee Ho;Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.69-86
    • /
    • 2020
  • Purpose: This study aims to determine the optimal conditions for the spot welding process that mechanically connects the case of a cylindrical secondary battery and the negative tab. Methods: We use 33 factorial design to derive the optimal conditions for the spot welding process. The pulling strength, the cross-sectional area of nugget, and the shock test life are selected as response variables, which can represent the resistance welding quality. The input variables are selected as the welding time, welding voltage, and pressure, which are the controllable factors in the spot welding process. Results: The main effects of welding time and welding voltage and the interaction effect of welding time and welding voltage are significant. Conclusion: The optimal conditions for the spot welding process to mechanically join the negative electrode tab of the cylindrical secondary battery and the battery case are developed. The result shows that the pulling strength is increased by 44% compared to before improvement under optimal conditions.

Comparison of Welding Characteristics on Heat input Changing of Laser Dissimilar Metals Welding (레이저 이종용접에서의 입열량 변화에 대한 용접특성 비교)

  • Shin H.J.;Yoo Y.T.;Shin B.H.;Ahn D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.997-1003
    • /
    • 2005
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding qualify of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1600W of the laser power, 0.85m/min of welding speed and 4m/min of pressure for shielding gas.

  • PDF

Friction Welding of Spheroidal Graphite Cast Iron and 2024 Aluminium Alloys using Insert Metal (삽입금속을 사용한 구상흑연주철과 2024 알루미늄합금의 마찰압접에 관한 연구)

  • KIM CHANG-GYU;KIM CHI-OK;KIM KWANG-ILL
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.76-81
    • /
    • 2003
  • Friction welding of GCD45 spheroidal graphite cast iron and 2024 aluminum alloy has been studied, especially in terms of the joint faces and strength of friction welding. For appropriate results of the friction welding of GCD45 graphite cast iron and 2024 aluminum alloy, an insert of A1050 pure aluminum metal was used. The joint strength of the A1050 pure aluminum insert approached the maximum strength of 165.7Mpa, compared to 128MPa for the joint between GCD45 graphite cast iron and A1050 pure aluminum without the insert metal. Maximum strength, 165.7Mpa, was possible for the following optimum conditions: 20MPa for the friction pressure, P1, 60MPa for the upsetting pressure, P2, 1 second for the friction time, t1, 3000rpm for the rotation, N, and 0.3 seconds for the brake time, tB.

A Study on the Mechanical Properties of the Friction Welding with Hollow and Solid Shaft of SM45C (SM45C의 중실축과 중공축의 마찰용접 특성에 관한 연구)

  • Koo, Keon-Seop;Choe, Won-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.841-846
    • /
    • 2010
  • The present study examined the mechanical properties of the friction welding with hollow and solid shaft of SM45, of which the diameter is 25.2mm and 33mm. Friction welding was conducted at welding conditions of 2,000rpm, friction pressure of 50MPa, upset pressure of 70MPa, friction time of 0.4sec to 1.4sec by increasing 0.2sec, upset time of 2.0 sec including variable such as friction time are following. Under these conditions, a tensile test, a hardness test and a microstructure of weld interface were studied. The results were as follows : When the friction time was 1.0 seconds under the conditions, the maximum tensile strength of the friction weld happened to be 1,094MPa, which is 120% compared with the tensile strength of SM45C base metal. The upset length linearly increased as friction time increased. According to the hardness test, the hardness distribution of the weld interface was formed from 475Hv to 739Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 2mm of SM45C.

Dissimilar Friction Welding of Elevated Temperature Materials for Pressure Vessels and Its AE Evaluation (압력용기용 고온재의 이종재 마찰용접과 AE평가)

  • Kong, Y.S.;Lee, Y.T.;Yoo, I.J.;Oh, S.K.;Lim, M.B.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.68-73
    • /
    • 2002
  • An opportunity to use the elevated temperature has been recently increasing in various elements of heat facilities or machines such as heat exchanger tubes, pressure vessels, engines of aircraft, boilers and turbines in power plants, and nuclear reactor components, etc. as machinery industry develops. Thus, the development of such elevated-temperature heat-resisting materials and the studies on their elevated-temperature materials friction welding, creep design and analysis have been considered as an important and needful fact. In this paper, friction welding optimization for 1Cr0.5Mo to STS304 and AE applications for the weld quality evaluation were investigated. The important results of this study are as follows : The techniques for dissimilar friction welding optimization of the elevated temperature materials 1Cr0.5Mo and STS304 and its real-time weld quality evaluation by AE were developed, considering on both strength and toughness. Quantitative relationship was identified among welding condition, weld quality and cumulative AE counts.

  • PDF

Evaluation of the Friction Welding Properties on SUS304 Alloy (SUS304합금의 마찰접합특성 평가)

  • Y. -K. Kim;K. -H. Song;J. -K. Chung;T. -K. Ha
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2024
  • The friction welding characteristics of stainless steels, mainly used in energy and chemical plant industries due to its excellent corrosion resistance and high strength, was evaluated in this study. Friction welding was introduced and conducted at a rotation speed of 2,000 RPM, friction pressure of 30 MPa, burn-off length of 5 mm and upset pressure of 110 ~ 200 MPa on rod typed specimens. The grain boundary characteristics distributions such a grain size, shape, misorientation angle and kernel average misorientation of the welds were clarified by electron backscattering diffraction method. The application of friction welding on SUS304 alloy resulted in a significant refinement of the grain size in the weld zone (5.11 mm) compared to that of the base material (48.09 mm). The mechanical properties of the welds, on the other hand, appeared to be relatively low or similar to those of the base material, which were mainly caused by dislocation density in the initial material and grain refinement in the welds.

The Development of the Narrow Gap Multi-Pass Welding System Using Laser Vision System

  • Park, H.C.;Park, Y.J.;Song, K.H.;Lee, J.W.;Jung, Y.H.;Didier, L.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • In the multi-pass welding of pressure vessels or ships, the mechanical touch sensor system is generally used together with a manipulator to measure the gap and depth of the narrow gap to perform seam tracking. Unfortunately, such mechanical touch sensors may commit measuring errors caused by the deterioration of the measuring device. An automation system of narrow gap multi-pass welding using a laser vision system which can track the seam line of narrow gap and which can control welding power has been developed. The joint profile of the narrow gap, with 250mm depth and 28mm width, can be captured by laser vision camera. The image is then processed for defining tracking positions of the torch during welding. Then, the real-time correction of lateral and vertical position of the torch can be done by the laser vision system. The adaptive control of welding conditions like welding currents and welding speeds, can also be performed by the laser vision system, which cannot be done by conventional mechanical touch systems. The developed automation system will be adopted to reduce the idle time of welders, which happens frequently in conventional long welding processes, and to improve the reliability of the weld quality as well.

  • PDF