• Title/Summary/Keyword: Welding Material

Search Result 1,143, Processing Time 0.025 seconds

A Study on the Characteristics of Gas Pressure Welding for Rails (가스압접 레일의 특성에 관한 연구)

  • Na Sung-Hoon;Kwon Sung-Tae;Kim Weon-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.775-780
    • /
    • 2004
  • CWR technology is generally believed to contribute to the increase of train speed and bring a variety of significant advantages, such as the decrease in track works, noise and vibration as well as the improvement of passenger comfort. In CWR technology, welding is considered to be one of the most important element technologies. Among the various welding methods, gas pressure welding is the most frequently used in vicinity of train line station since the operation is simple and the instruments are not heavy. The gas pressure welding is constructed exactly by good manual book on which simple and excellent welding methods is written and has the same performance as raw material. But this can be poor in the variety of the processing of rail end surface to be welded, the control of oxyacetylene flame and axil compressive force. This study tries to describe the characteristics of gas pressure welding, defect-causing factors and preventive counterplan of defects

  • PDF

A Study on Fatigue Characteristics of Dissimilar Spring Steel(SUP9A)-SM25C by Friction Welding (스프링강(SUP9A)-SM25C의 이종재 마찰용접 피로특성에 관한 연구)

  • 정석주;이기중
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.19-25
    • /
    • 2001
  • The friction-welding SM25C is a substitute for the suing steel that is utilized in the machinery, airplane, and automobile, ok. This substitution would provide reduction of material and weight of welding parts. From the result we found that the strength of the friction welded joint was 529-617MPa and the toughness 1.2 times higher than that of the base metal. The optimal condition of friction welding was found as follows : n=2000rpm, $P_1$=68㎫, $P_2$=137MPa, $t_2$=2sec, $t_1$=2-4sec, Considering the strength, the hardness, and the reduction of area in the friction welding, the fiction welding using SUP9A and SM25C was found to cause no problem in on-the-job application.

  • PDF

High power $CO_2$ laser beam welding for low carbon steels (저탄소강의 고출력 $CO_2$ 레이저 빔 용접)

  • 김재도
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.12-21
    • /
    • 1989
  • Laser beam welding parameters have experimentally investigated, using a continuous wave 3kW $CO_2$ laser with the various travel speeds, beam mode and laser beam power in low carbon steels. An optimum position of focus and the effect of shielding gas on penetration depth with varying the flow range of 0.5 to 5.1m/min have been combined to investigate the effect of laser power and travel speed on penetration depth and bead width. It is found that the optimum position of focus in 3kW class laser is 0.5 to 1.5mm below the surface of the material. The flow rate of shielding gas affects the penetration depth and He is more effective than Ar. The penetration depth in laser welds of low carbon steels is between two and four times of the bead width. Laser beam welding of butt joints in 2mm thick carbon steel has been carried out to establish a weldability lobe. The lobe indicating acceptable welding conditions is introduced.

  • PDF

Analysis of Residual Stress on Dissimilar Butt Joint by TIG Assisted Hybrid Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 잔류응력 해석)

  • Bang, Hee-Seon;Ro, Chan-Seoung;Bijoy, M.S.;Bang, Han-Sur;Lee, Yoon-Ki
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • This paper aimed to study and understand the mechanical phenomena of thermal elasto-plastic behavior on the dissimilar butt joint (Al 6061-T6 and STS304) by TIG assisted Friction Stir Welding. Heat conduction and residual stress analysis is carried out using in-house solver. Two-dimensional results of the heat distribution and residual stresses in dissimilar joint for particular tool geometry and material properties are presented. The predicted stress along longitudinal direction in Al 6061-T6 and STS304 are approximately between 12-15% of their respective yield strengths. A comparison is made between experimentally measured and numerically predicted equivalent residual stress values.

Analysis of Complex Heat Distribution in TIG Assisted Friction Stir Welding of Dissimilar Materials (STS304+Al6061) (이종재료(STS304+Al6061) TIG-FSW Hybrid 용접부의 열 특성 해석)

  • Bijoy, M.S.;Bang, Hee-Seon;Bang, Han-Sur
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.59-59
    • /
    • 2010
  • Friction stir welding has become a viable and important manufacturing alternative or fabrication component, especially in aerospace and automobile applications involving aluminium alloys. In recent years, there is an increasing interest for FSW of dissimilar metals and alloys, particularly systems which are difficult to weld by conventional, thermal (or fusion) welding. In this study we tried to analyse the complex heat distribution occurring in TIG assisted FSW of dissimilar butt joint (STS304 and Al6061). For this, an analytical model for heat generation by FSW based on contact conditions has been developed. The heat input was calculated considering the coefficient of friction and slip factor between each work piece material with the tool material. The thermal model is used to generate the temperature characteristics curve, which successfully predicts the maximum welding temperature in each alloys. The analysis was carried out using the in-house solver.

  • PDF

The Analysis of Welding Deformation in Large Welded Structure by Using Local & Global Model (Local & Global 모델을 이용한 용접구조물 변형 해석에 관한 연구)

  • Jang Kyoung-Bok;Cho Si-Hoon;Jang Tae-Won
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.25-29
    • /
    • 2004
  • Some industrial steel structures are composed by components linked by several welding joints to constitute an assembly. The main interest of assembly simulation is to evaluate the global distortion of welded structure. The general method, thermo-elasto-plastic analysis, leads to excessive model size and computation time. In this study, a simplified method called "Local and Global approach" was developed to break down this limit and to provide a accurate solution for distortion. Local and global approach is composed of 3 steps; 1) Local simulation of each welding joint on a dedicated mesh (usually very fine due to high thermal gradients), taking into account for the non linearity of the material properties and the moving heat source. 2) Transfer to the global model of the effects of the welding joints by projection of the plastic strain tensors. 3) Elastic simulation to determine final distortions in global model. The welding deformation test for mock-up structure was performed to verify this approach. The predicted welding distortion by this approach had a good agreement with experiment results.

A Study on the Development of Arc Length Estimation Method in FCAW (FCAW에서의 아크 길이 추정 방법 개발에 관한 연구)

  • Bae, Kwang-Moo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.67-72
    • /
    • 2009
  • The flux cored arc welding (FCAW) process is one of the most frequently employed and important welding process due to high productivity and excellent workability. The process is performed either as an automated process or as a semi-automatic process. In FCAW process, welding voltage has been considered as a qualitative indication of arc length. But it is necessary to let welding operators know, maintain and manage the arc length directly by estimating and displaying it. In this study, to develop arc length estimation technique, we measured a welding circuit resistance($R_sc$) and then we calculated welding circuit voltage drop($V_sc$). Also, we measured arc peak voltage($V_ap$). By subtracting $V_sc$ from $V_arc$, we can easily calculate net arc voltage drop($V_arc$). Consequently, we suggested arc length estimating equation and basic algorithm by regressive analyzing the relationship between net arc voltage drop($V_arc$) and real arc length(Larc) measured by high speed camera. Therefore, arc length can be predicted by just monitoring welding current and voltage.

Electric Resistance Surface Friction Spot Welding Process of AZ31 Mg Alloy Sheets by Using Rotating Dies (회전금형을 사용하는 AZ31 마그네슘 합금판재의 전기저항 표면마찰 스폿용접)

  • Kim, T.H.;SUN, XIAOGUANG;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.145-153
    • /
    • 2018
  • Magnesium material could be widely used in the automotive industry because of its high strength to weight ratio, but the electric resistance spot welding process of magnesium sheets is difficult because of its low electric resistance and high thermal conduction and thermal expansion. For this reason, an electric resistance surface friction spot welding process using rotating dies is suggested for the spot welding of magnesium metal sheets. This welding method can be characterized by three heating methods: (1) electric resistance heating on contacted surface, (2) surface friction heating by rotating dies, and (3) thermal conduction heating from heated steel electrodes, for the fusion of metal at the interfacial zone between the two magnesium sheets. This welding process also has variables to explore, such as welding currents, diameters of the steel electrode, and rotating dies. It was found that the welding strength could reach industrial requirements by applying a welding current of 11.0kA, with steel electrodes of 12mm diameter, with rotating dies of 4.4 mm diameter, under the condition of a revolution speed of 1200rpm of rotating dies, for the surface friction spot welding process of AZ31 magnesium alloy sheets of 1.4mm thickness.

Determination of Preheating Temperature for Box Girder Welding (강교용 박스거더의 용접예열 온도 선정에 관한 연구)

  • Cho, Jae-Hun;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.7 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • This study analyzed causes and status of cracks to suggest preventives for welding cracks generated on fillet welding zone of atmosphere corrosion resisting steel box girder. Penetrant testing, a sort of non-destructive testing, was conducted for inspection of crack status on welding zone. As a result of test, welding cracks were found on the point of start, center and end to fillet welding zone of 32 mm-thickness. The result of carbon equivalent composition of materials was 0.452%. According to welding specification, to preheat prevent welding crack, preheat temperature of $100{\sim}200^{\circ}C$ should be kept before welding execution. It was failed to keep preheat temperature because it had been executed on winter season and the structure of box girder had wide heat transfer area. As a result of examination of time varying preheating temperature of 32mm-thickness material, it was understood that preheat temperature of above $230^{\circ}C$ on both 130mm-long sides of welded joint can prevent welding crack.

  • PDF

A Study on the Shot-Peening Effect for Fatigue Life Improvement of Laser Welding Material (레이저 용접재의 피로수명 향상을 위한 쇼트피닝 영향에 관한 연구)

  • Rong, HuaWei;Lee, Hyun-Jun;Jung, Hae-Young;Hur, Sun-Chel;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.57-61
    • /
    • 2010
  • At present, welding technology is not only emphasized in the development of manufacturing technology but its application is also expanding. In these systems, attempts have been made to use SUS as a high-temperature material for special applications, and in improvements in manufacturing technologies bear watching, together with an increase in the use rate. Specifically, three-dimensional wings are often used for fasteners with the purpose of decreasing the weight (정해용, 2007). However, due to developments in welding technology, there has been a recent tendency to replace existing assembly methods with welding. Specifically, if laser welding techniques are applied, the heat-affected zone can be minimized compared toother welding techniques. However, in the case of these special welding techniques, there is an increase in residual stress, which fatally affects the fatigue life. In order to remove the residual stress and its effect on fatigue life, shot-peening is executed. The intention of this study was to obtain the optimal conditions for shot-peening.