• Title/Summary/Keyword: Welded Structure

Search Result 531, Processing Time 0.026 seconds

Experimental Investigations on the Fatigue Strength of the Submarine Pressure Hull (잠수함 압력선체의 피로강도에 대한 실험적 연구)

  • Kim, Uln-Yeon;Kim, Kuk-Bin;Jeon, Jae-Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.67-75
    • /
    • 2010
  • Submarine and deep sea diving structures are generally designed based on their ultimate strength. Fatigue strength at welded joint must be also taken into account because working stress is increased due to the increasing of diving depth and using high yield steel. The pressure hulls of submarine are subjected to fluctuating compressive loading. But in addition to the calculated stresses, high residual tensile stresses at welded part have to be considered. The state of stress level of pressure hull is tensile at surface and compressive at deep diving depth. This paper presents the results of an experimental investigation on the crack initiation and growth at the weld toe of T welded joints of HY-100 steel plate under constant amplitude loading. It is also investigated the phenomenon of the fatigue failure and test methods. Fatigue tests have been using real scaled local structural models of full penetration T-welded joint, which is a part of the cylindrical shell structures reinforced by ring stiffeners. Several load ratios under constant amplitude loading are considered in the tests. Crack initiation and growth characteristics are examined based on the beach marks of the cracked section of the test specimens. A design stress-life curve including the design formula is suggested according to tested data.

A Study on Stree Analysis and Bending Fatigue Strength of One Side Fillet Welded T-joint (T형 평면용접이음재의 응력해석과 굽힘피로강도에 관한 연구)

  • Gang, Seong-Won;Lee, Tae-Hun;Jeon, Jae-Mok;Kim, Chung-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.51-57
    • /
    • 1999
  • In this study, one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by stress analysis and bending fatigue test without edge preparation, with variation of joint shape. The purpose of this study is to give the welding condiltion and design standard on manufacturing one side fillet welded T-joint. As a result, the following conclusions were obtained. 1) In one side fillet welded T-joint, the larger the leg length and the penetration depth, the greater the bending fatigue strength because reduction of stress and strain on toe and root. The increase of the longitudinal leg length rather than vertical leg length contributed to the increase in bending fatigue strength. 2) In one side fillet welded T-joint without edge preparation, both general manual welding and general automatic welding were carried out with same condition. In this case, automatic welding showed deeper penetration and more increased longitudinal leg length than manual welding, so that automatic welding offers greater bending fatigue strength. 3) For one side fillet welded T-joint without edge preparation with automatic welding, the ratio(h/t) of the leg length(h) and the main plate thickness(t) in which toe crake can occur was 1.0 over.

  • PDF

An Experimental Study on Block Shear Strength of Carbon Steel Fillet Welded Connection with Base Metal Fracture (탄소강 용접접합부의 모재블록전단내력에 관한 실험적 연구)

  • Lee, Hwa-Young;Hwang, Bo-kyung;Lee, Hoo-Chang;Kim, Tea-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • An experimental study on the ultimate behaviors of the mild carbon steel (SPHC) fillet-welded connection is presented in this paper. Seven specimens were fabricated by the shielded metal arc welding (SMAW). All specimens failed by typical block shear fracture in the base metal of welded connections not weld metal. Block shear fracture observed in the base metal of welded connection is a combination of single tensile fracture transverse to the loading direction and two shear fractures longitudinal to the loading direction. Test strengths were compared with strength predictions by the current design equations and suggested equations by previous researchers. It is known that current design specifications (AISC2010 and KBC2016) and Oosterhof & Driver's equation underestimated overly the ultimate strength of the welded connection by on average 44%, 31%, respectively and prediction by Topkaya's equation was the closest to the test results. Consequently, modified equation is required to be proposed considering the stress triaxiality effect and material property difference on the block shear strength for base metal fracture in welded connections fabricated with mild carbon steel.

Fatigue Resistance Improvement of Welded Joints by Bristle Roll-Brush Grinding

  • Kim, In-Tae;Kim, Ho-Seob;Dao, Duy Kien;Ahn, Jin-Hee;Jeong, Young-Soo
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1631-1638
    • /
    • 2018
  • In the periodic repainting of steel bridges, often the steel surface has to be prepared by using power tools to remove surface contaminants, such as deteriorated paint film and rust, and to increase the adhesive strengths of the paint films to be applied newly. Surface preparation by bristle roll-brush grinding, which is a type of power tool, may additionally introduce compressive residual stress and increase the fatigue resistance of welded joints owing to the impact of rotating bristle tips. In this study, fatigue tests were conducted for longitudinally out-of-plane gusset fillet welded joints and transversely butt-welded joints to evaluate the effect of bristle roll-brush grinding prior to repainting on the fatigue resistance of the welded joints. The test results showed that bristle roll-brush grinding introduced compressive residual stress and significantly increased fatigue limits by over 50%.

The effect of carbon content on hot cracking of low carbon steel weld (저탄소성 용접금속의 응고균열에 미치는 탄소함량의 영향)

  • ;;Masumoto, I.
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.16-26
    • /
    • 1988
  • The effect of carbon content on hot cracking of welded carbon steel was investigated Eight steel plates whose carbon content range from 0.02 to 0.23 percent were welded by autogeous gas tungsten are process. Constant strain was applied to the hot crack test specimen under the strain rate of 0.15 mm per second during welding. The hot cracking susceptibility ws high in the rnage of 0.02-0.05 and 0.12-0.23 percent carbon contents. The critical carbon content immune to hot cracking is in the range from 0.07 to 0.12 percent carbon. By electron probe microanalyser, amanganese segregation was not seen significantly in the whole carbon range. But segregation of silicon was higher in the region of low carbon contents. However, sulphur was segregated remarkably in the region betwen 0.18 and 0.23 percent carbon by peritectic reaction. Very smal lamount of dnedritic structure was observed in the region from 0.02 to 0.05 percent carbon by peritectic reaction. Very small amount of dendritic structure was observed in the region from 0.02 to 0.05 percent carbon but the predominant solidification structure was smooth by cellular growth. The higher the carbon content is, the more the columnar dendritic structure was observed.

  • PDF

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 1st Report : on the Mechanical Properties and Microstructure (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제1보 : 기계적 특성 및 조직)

  • Ahn, Seok-Hwan;Jeong, Jeong-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.64-71
    • /
    • 2005
  • The welding methods have been applied to the most structural products used in the automobile, ship construction, and construction. The structure steel must have sufficient strength of structure; However, the mechanical properties of the welded part changes when it is welded. Therefore, the stability or life of the structure may be affected by the changed mechanical properties. The mechanical properties of the welded part must be examined in order to ensure the safety of structure. In this research, the SS400 steel and the STS304 steel were used to estimate the mechanical properties of the HAZ by weld thermal cycle simulation. In this study, the materials were used to examine the weld thermal cycle simulation characteristic, under two conditions: the drawing with diameter of $\Phi$10 and the residual stress removal treatment. To examine the mechanical properties by the weld thermal cycle simulation, the tensile test was carried out in room temperature. The crosshead speed was lmm/min.

Lightweight Design for Automotive Door Using Optimizations and Design of Experiments (최적화기법 및 실험계획 법을 이용한 자동차 도어의 경량화 설계)

  • 송세일;배금종;이권희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.125-132
    • /
    • 2002
  • Recently, ULSAB(Ultra Light Steel Auto Body) concept is getting more attention due to various benefits in automotive body design. One of the ULSAB efforts is making a door with TWB(Tailor Welded Blanks). In TWB, two or more patches of steel panels are welded together before stamping process. In this research, domains and thicknesses of the patches in a front door structure are determined by a series of optimization schemes composed of topology, size and shape optimization and DOE(Design of Experiments) scheme. A door is designed to have better performances compared to exiting structure considering static stiffness and natural frequency. The final design is discussed and compared to the existing design.

Fatigue Crack Detection Test of Weldments Using Piezoceramic Transducers

  • KIM MYUNG HYUN;KANG SUNG WON;KEUM CHUNG-YON
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.21-27
    • /
    • 2005
  • Large welded structures, including ships and offshore structures, are normally in operation under cyclic fatigue loadings. These structures include many geometric discontinuities, as well as material discontinuities due to weld joints. The fatigue strength at these hot spots is very important for the structural performance. In the past, various Non Destructive Evaluation (NDE) techniques have been developed to detect fatigue cracks and to estimate their location and size. However, an important limitation of most of the existing NDE methods is that they are off line; the normal operation of the structure has to be interrupted, and the device often has to be disassembled. This study explores the development of a structural health monitoring system, with a special interest in applying the technique to welded structural members in ship and offshore structures. In particular, the impedance based structural health monitoring technique that employs the coupling effect of piezoceramic (PZT) materials and structures is investigated.

Design of Excavator Boom Structure Based on Fatigue Strength of Weldment(II) (용접부 피로강도를 고려한 굴삭기 붐 구조물 설계(II))

  • Park, Sang-Chul
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this study is to develop improved boom structures with reliable fatigue strength of weldment and lower production cost. For that purpose, multi-body dynamic analysis was performed to evaluate forces acting on arm & boom cylinders and joints of boom structure during operation of an excavator for three working postures, then stress analysis was made to investigate stress distribution around diaphragms at the bottom plate of boom structures which was known to be susceptible to fatigue failures of welded joints, and finally boom structures with optimum arrangement of diaphragms was proposed. This work mainly consists of the following two parts: part 1 focuses on multi-body dynamic analysis of excavators during operation and part 2 includes evaluations of fatigue strength of welded joints for modified boom structures.

Introduction of Prediction Method of Welding Deformation by Using Laminated Beam Modeling Theory and Its Application to Railway Rolling Stock

  • Mun, Hyung-Suk;Jang, Chang-Doo
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.175-179
    • /
    • 2009
  • The welding deformation and its prediction method at the HAZ (Heat-Affected Zone) are presented in this paper. The inherent strain method is well known as analytical method to predict welding deformation of large scale welded structure. Depend on the size of welding deformation in welding joints, the fatigue life, the stress concentration factor and the manufacturing quality of welded structure are decided. Many welded joints and its manufacturing control techniques are also required to railway rolling stock and its structural parts such as railway carbody and bogie frame. Proposed methods in this paper focus on the two different the inherent strain area at HAZ. This is main idea of proposed method and it makes more reliable result of welding deformation analysis at the HAZ.

  • PDF