• Title/Summary/Keyword: Welded Structure

Search Result 531, Processing Time 0.025 seconds

Microstructural and Fatigue Characteristecs of AA6005A Weldments for Railroad Vehicles (철도차량용 6005A 알루미늄 합금 압출재의 미세조직 및 용접부 피로 특성)

  • 이정국;서창우;오창록;신동혁;이동헌;김용석
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2000
  • This research investigates microstructures and fatigue properties of the weldments of 6005A aluminum alloy developed for railroad vehicles. The samples were extruded into a truss structure and welded together using the gas metal arc welding process. The extruded sample showed a wide variation in grain size, possibly due to the frictional heating as well as the inghomogeneous metal flow in the extrusion die. The mechanical properties of the samples were affected by the mirocstructures. The fatigue strength of the welded structure was found to decrease significantly from that of the base metal. It was found that the fatigue characteristics of the welded structure were determined by the microstructure of the parent metal as well as weld defects such as porosities and the liquation cracks.

  • PDF

A Study on the Optimum Line Heating Condition for Straightening a Thin Plate Welded Structure (박판재 용접 구조물의 선상 가열 교정에서 최적 조건의 선정에 관한 연구)

  • Park, Jun-Hyoung;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.40-45
    • /
    • 2011
  • The purpose of this study is to establish the optimum line heating condition to straighten the excessive bending distortion of a thin plate welded structure. For it, the extensive FEA and experiments were performed to evaluate the effect of heat source, heating speed and position on the straightening of a thin plate welded structure. In accordance with the results obtained by FEA and experiments, the straightening effect of line heating was strongly depends on the variables used in this study. With the results, the optimum line heating condition was established by using the response surface method and verified through comparing it with the numerical analysis result.

Evaluation of Buckling Distortion for the Thin Panel Welded Structure According to Welding Processes (박판 패널 용접부의 용접 기법에 따른 좌굴 변형에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this study is to propose the proper fillet welding process for preventing the buckling distortion in thin panel welded structure. In order to do it, a heat input model for laser hybrid welding process was developed using FEA and experiment. The principal factors controlling the angular distortion and longitudinal shrinkage force caused by FCA and laser hybrid welding were identified as the welding heat input and weld rigidity using FEA. The predictive equations of angular distortion and longitudinal shrinkage force for each welding process were formulated as a function of the principal factors proposed. With the predictive equations, the buckling distortion at the thin panel welded structure with welding process was evaluated and compared using nonlinear buckling analysis and STEM(simplified thermo elastic method). Based on the results, the best way to prevent the buckling distortion at the given welded panel structures was identified as an intermittent FCA welding.

Development of Residual Stress Analysis Procedure for Fitness-For-Service Assessment of Welded Structure (용접 구조물의 사용중 적합성 평가를 위한 잔류응력 해석절차 개발)

  • Kim, Jong-Sung;Jin, Tae-Eun;P. Dong;M. Prager
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.713-723
    • /
    • 2003
  • In this study, a state of art review of existing residual stress analysis techniques and representative solutions is presented in order to develope the residual stress analysis procedure for fitness-for-service (FFS) assessment of welded structure. Critical issues associated with existing residual stress solutions and their treatments in performing FFS are discussed. It should be recognized that detailed residual stress evolution is an extremely complicated phenomenon that typically involves material-specific ther-momechanical/metallurgical response, welding process physics, and structural interactions within a component being welded. As a result, computational procedures can vary significantly from highly complicated numerical techniques intended only to elucidate a small part of the process physics to cost-effective procedures that are deemed adequate for capturing some of the important features in a final residual stress distribution. Residual stress analysis procedure for FFS purposes belongs to the latter category. With this in mind, both residual stress analysis techniques and their adequacy for FFS are assessed based on both literature data and analyses performed in this investigation.

Statistical Investigateion of Fatigue Life Predictioin of the Spot Welded Lap Joint(II) ; to verity reliabilty of fatigue strength estimatioin method (Spot 용접이음재의 피로수명 예측에 관한 확률적 검토(II) : 피로강도 평가법의 신뢰성 검증)

  • 손일선;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.242-249
    • /
    • 1999
  • Spot welding is very important and useful technology in fabrication of an automobile body structure. Because fatigue strength of the spot welding point is however considerably lower than parent metal due to stress concentration at the nugget edge, accurate stress analysis and fatigue stength evaluation of spot welded lap joint are very important to valuate the reliability and durability of automobile body structure and to establish a criterion of long life fatigue design. Many invetigators have studied so far onsystematic fatigue strength evaluation with various methods. It is however necessary to verify their reliability and abailability for practical application to fatigue design of spot welded structure, Thus,in this study, fatigue strength evaluation methods of spot welded lap joint. which are the maximum principal stress method. the fracture and availability with the Weibull probability distribution. From the results, it was found that reliability and availability withe the Weibull probaility distribution. From the results, it was found that reliability and availability of the suggest fatigue strength estimation methods methods were higher than $\Delta$P-$N_f$ relation. However, among them , reliability of the maximum pricipal stress method was the highest.

  • PDF

The Effect of Ultrasonic Impact Treatment(UIT) for Fatigue Life of Weldment (Ultrasonic Impact Treatment(UIT)효과가 용접재의 피로수명에 미치는 영향)

  • Song, Jun-Hyouk;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2010
  • Welding structures are designed to endure its expected life. The most important factors are life. Especially on welded structure, fatigue strength is critical. So this study performed a research on Box and T shape weldment specimen to examine the influence of welding type. In this experiment, the results indicate Box shape was available in more than T shape. Fatigue tests were performed to evaluate the fatigue strength of the both as-welded and statically pre-loaded specimens by 3 point bending load. Fatigue life can be improved by using Ultrasonic Impact Treatment(UIT) effect. Ultrasonic Impact Treatment(UIT) is excellent for eliminating the tensile residual stresses and generating compressive residual stresses which elevate fatigue strength of welded structures. Also, this shows that welding part has better fatigue life and welding was performed well. In this study, to evaluate the Ultrasonic Impact Treatment(UIT) effect, for welding structure, the experiment was conducted at various levels of stress range between 100MPa and 500MPa. From the test results, it was indicated that fatigue performance was improving by Ultrasonic Impact Treatment(UIT)

Investigation of Flow Distribution Characteristics at the Channel Location according to the Header Shape of Welded Plate Heat Exchanger (용접식 판형열교환기 헤더형상에 따른 채널 위치별 유량 분배 특성 고찰)

  • Ham, Jeonggyun;Kim, Eui;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • To improve the flow distribution at channel locations in the welded plate heat exchanger with "L"-type inflow, the flow visualization of Model 1 was carried out. Besides, the characteristics of flow distribution was investigated experimentally according to the header shape. The inlet flow rate for each channel location was increased at the side channels but decreased at the central channels. In the case of Model 2, which has a slant structure added to the basic header of Model 1, the unevenness of inlet flow increased by 23% from 0.019 to 0.023 as compared to Model 1. On the other hand, Model 3, which has a baffle structure added to Model 2, showed 0.064 unevenness in inlet flow, which was a 36% reduction one compared to Model 1. To improve the distribution at each channel in the welded plate heat exchanger with "L"-type flow, it is necessary to improve the header external shape for the guide of flow as well as the baffle structure for reduction of vortex flow.

A Study on Improving Reliability of Durability Life Estimation for Excavator Fuel Tank Mounting Using Equivalent S-N Curve Method (등가 S-N 선도 모형에서의 굴착기 연료탱크 마운팅부 내구수명 예측 신뢰성 향상 방안 연구)

  • Lee, Sung-Won;Jeong, Jin-Wook;Kim, Seong-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.17-26
    • /
    • 2021
  • It is challenging to estimate the fatigue life of construction equipment consisting of a welded joint using field structure test owing to the uncertainty of the S-N curve. IIW recommends different S-N curves for various welded joint types. However, there is no way to define an appropriate curve considering complex design shape and strain gauge characteristics. This paper proposes an equivalent S-N curve method based on the relationship between IIW effective notch stress and virtual stress using finite element analysis. Moreover, a case study was conducted for the excavator fuel tank. The proposed method is expected to enhance accuracy and consistency in calculating the fatigue life for the welded structure of construction equipment.

Fatigue Strength Evaluation on the IB-Type Spot Welded Lap Joint of 304 Stainless Steel Part 2 : Strain energy Density (304 스테인레스 박강판 IB형 용접이음재의 피로강도 평가 Part 2 : 변형에너지 밀도에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 1999
  • Since stainless steel plates have good mechanical properties, weldability, appearance and resistance of corrosion, these are traditionally used for vehicles such as the bus and the train. And they are mainly fabricated by spot welding. But fatigue strength of their spot welded joint is considerably influenced by welding conditions as well as geometrical factors. Thus a reasonable and systematic criterion for long life design of spot welded body structure must be established. In this report, strain energy density was analyzed by using 3-dimensional finite element model about the IB-type spot welded lap joint under tension-shear load. Fatigue tests were conducted on them having various thickness, joint angle, lapped length and width. From their results, it was found that fatigue strength of the IB-type spot welded lap joints could be effectively and systematically rearranged by strain energy density at the edge of nugget.

  • PDF

A study on the cracking mechanism of the welded parts in steel structures for the use of low temperature and high pressure (저온, 고압력용 강재 구조물의 용접부균열 발생과 그 대책에 관한 연구)

  • 김영식;배차헌;구자영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.328-338
    • /
    • 1985
  • When the low temperature service steels are used as materials for welded structure, some problems-brittleness and weld cracking, etc.-occur in welded part due to the change of mechanical and metallurgical characteristics resulted from the thermal cycle during the welding procedure. In this study, the experiments were conducted to investigate the change of mechanical and metallurgical characteristics of the welded part for the low temperature and high pressure service steels. Moreover, the Static and Dynamic Implant Test Method was introduced to this study in order to find out the mechnism of weld cracking. In addition, the fracture toughnesses of welded bond were inspected under the various low temperature environments. Main results obtained are as follows; 1) The effect of the hydrogen on the fatigue characteristics of the weld bond can be estimated by the new self-contrived Dynamic Implant Test equipment. 2) The fine micro-structure and low hardness in the heat affected zone can be obtained by the small heat input multi-pass welding. 3) The susceptibility of the delayed cracking is largely affected by the condition of used electrode. 4) The transition temperature of the fracture surface in weld bond appears to be higher 20 .deg. C than that in base metal.

  • PDF