• Title/Summary/Keyword: Welded Component

Search Result 87, Processing Time 0.02 seconds

Redistributions of Welding Residual Stress for CTOD Specimen by Local Compression (Local compression에 의한 CTOD 시편내의 용접잔류응력 재분포)

  • Joo, Sung-Min;Yoon, Byung-Hyun;Chang, Woong-Seong;Bang, Han-Sur;Bang, Hee-Seon;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.31-35
    • /
    • 2009
  • When conducting CTOD test, especially in thick welded steel plate, fatigue pre-cracking occasionally failed to satisfy the requirements of standards thus making the test result invalid. Internally accumulated residual stress of test piece has been thought as one of the main reasons. The propagation of fatigue crack, started from the tip of machined notch, which might have propagated irregularly due to residual stress field. To overcome this kind of difficulty three methods to modify the residual stress are suggested in standard i.e. local compression, reverse bending and stepwise high-R ratio method. In this paper not only multi pass welding but also local pre-compressing process of thick steel plate has been simulated using finite element method for clarifying variation of internal welding residual stress. The simulated results show that welding residual stress is compressive in the middle section of the model and it is predominantly increased after machining the specimen. Comparing as-welded state all component of the welding residual stress changing to compressive in the tip of machine notch whereas residual stress of the outer area remain as tensile condition relatively. Analysis results also show that this irregular residual stress distribution is improved to be more uniformly by applying local compression.

Ultrasonic wireless sensor development for online fatigue crack detection and failure warning

  • Yang, Suyoung;Jung, Jinhwan;Liu, Peipei;Lim, Hyung Jin;Yi, Yung;Sohn, Hoon;Bae, In-hwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • This paper develops a wireless sensor for online fatigue crack detection and failure warning based on crack-induced nonlinear ultrasonic modulation. The wireless sensor consists of packaged piezoelectric (PZT) module, an excitation/sensing module, a data acquisition/processing module, a wireless communication module, and a power supply module. The packaged PZT and the excitation/sensing module generate ultrasonic waves on a structure and capture the response. Based on nonlinear ultrasonic modulation created by a crack, the data acquisition/processing module periodically performs fatigue crack diagnosis and provides failure warning if a component failure is imminent. The outcomes are transmitted to a base through the wireless communication module where two-levels duty cycling media access control (MAC) is implemented. The uniqueness of the paper lies in that 1) the proposed wireless sensor is developed specifically for online fatigue crack detection and failure warning, 2) failure warning as well as crack diagnosis are provided based on crack-induced nonlinear ultrasonic modulation, 3) event-driven operation of the sensor, considering rare extreme events such as earthquakes, is made possible with a power minimization strategy, and 4) the applicability of the wireless sensor to steel welded members is examined through field and laboratory tests. A fatigue crack on a steel welded specimen was successfully detected when the overall width of the crack was around $30{\mu}m$, and a failure warnings were provided when about 97.6% of the remaining useful fatigue lives were reached. Four wireless sensors were deployed on Yeongjong Grand Bridge in Souht Korea. The wireless sensor consumed 282.95 J for 3 weeks, and the processed results on the sensor were transmitted up to 20 m with over 90% success rate.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.123-133
    • /
    • 2018
  • Steel-concrete-steel (SCS) sandwich composite structure with corrugated-strip connectors (CSC) has the potential to be used in buildings and offshore structures. In this structure, CSCs are used to bond steel face plates and concrete. To overcome executive problems, in the proposed system by the authors, shear connectors are one end welded as double skin composites. Hence, this system double skin with corrugated-strip connectors (DSCS) is named. In this paper, finite element model (FEM) of push-out test was presented for the basic component of DSCS. ABAQUS/Explicit solver in ABAQUS was used due to the geometrical complexity of the model, especially in the interaction of the shear connectors with concrete. In order that the explicit analysis has a quasi-static behavior with a proper approximation, the kinetic energy (ALLKE) did not exceed 5% to 10% of the internal energy (ALLIE) using mass-scaling. The FE analysis (FEA) was validated against those from the push-out tests in the previous work of the authors published in this journal. By comparing load-slip curves and failure modes, FEMs with suitable analysis speed were consistent with test results.

Dissimilar Friction Welded for Shock Absorber Steels and Its Evaluation by AE (자동차 쇽업소바용 강재의 이종 마찰용접과 AE평가)

  • Lee, Bae-Sub;Kong, Yu-Sik;Kim, Seon-Jin;Oh, Sae-Kyoo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.133-137
    • /
    • 2003
  • The shock absorber for vehicles is the important component to absorb the shock in driving. These essential components, piton and piston rod, must be made of S25C, S45C and SCM440 generally depending on kind of vehicles, precisely machined and assembled by the bolt. And it has been difficult to weld this sort of dissimilar materials. They could be unstable in the quality by the conventional arc welding. And also they have a lot of technical problems in manufacturing. But by the friction welding technique, it will be able to be made without such problems. These factors above necessitate nowadays the domestic development of the shock absorber by friction welding and a new approach of study on real-time quality evaluation by AE techniques.

  • PDF

Evaluation of Laser Welding Characteristics of 1.5GPa Grade Ultra High Strength Steel for Automotive Application (1.5GPa급 자동차용 고강도강의 레이저 용접부 특성평가)

  • Kim, Yong;Park, Ki-Young;Lee, Kyoung-Don;Jeong, Jun-Kou;Kim, Dong-Wha
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • Recently the use of ultra high strength steels (UHSS) in structural and safety component is rapidly increasing in the automotive industry. For example, 1.5GPa grade hot stamping with die-quenching of boron steel 22MnB5 could apply crash-resistant parts such as bumpers and pillars. The development of laser welding process of hot stamping steels, fundamental bead-on-plate welding and lap joint welding test were carried out using 3kW Nd:YAG laser. Local hardening & HAZ softening occurred in hot stamping steel as a result of metallurgical change caused by the welding heat input in the Nd:YAG laser welding process. The size of soft zones in the hot stamping steel was related to the welding heat input, being smaller at high speeds which generated a smaller heat input. Also in the case of lap joint design structure, same welded characteristics were shown. The HAZ softening degree was controlled to ensure the joint strength.

  • PDF

Texture of Ultrasonic Weld Interface in Metals (초음파 용접 계면의 집합 조직)

  • 김인수;김성진;이민구;이응종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.73-80
    • /
    • 1996
  • Commerical purity aluminium , copper and STS 304 stainless steel sheets are welded by ultrasonic welding. The microstructures, x-ray diffraction profiles of planes , pole figures of the surface of original metal sheets are compared with those of the weld interface. The microstructures show disturbance and dark areas in the weld interface and grain refinement in the vicinity of the interface. The x-ray diffraction intensity of each plane in weld interface decreased in all metal sheets with exception of 9200) in steel sheet. The microstructure and x-ray diffraction intensity is affected by the mixture of deformation, heating and vibratin duringthe ultrasonic welding. Therefore, after the ultrasonic welding, the positions of the peak intensity in the pole figures are changed, the value of the maximum pole intensity is decreased in Al, is increased in copper and stainless steel. Very strong {100} <001> texture, strong {100} <001>,{123}<634> textures in original Al surface are transformed into weak, {100}<001>, {110}<112> and {112}<111> components in weld surface, weak (110) fiber is slightly changed to (110) fiber in copper, (100)and ${\gamma}$ fiber components are transformed into strong ${\gamma}$ fiber component in stainless steel.

  • PDF

A Study on Development of Combined Drawing Process for Automotive Cowl Cross Bar with Variable Diameters (가변직경을 갖는 자동차용 카울크로스바의 복합인발공정 개발에 관한 연구)

  • Kim, H.S.;Youn, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.538-543
    • /
    • 2009
  • The cowl cross bar of an automobile is a frame component that is installed inside the cockpit module to provide a guide surface, to which functional components for electricity and air condition are attached. In the recent years, the geometries of cowl cross bars are getting more complex in order to meet the demands of a wide variety of embedded functional components and the reduced weight of frame parts with enhanced mechanical and noise/vibration characteristics. There for, welding processes between tubes with different diameters are widely conducted while the welded parts are experiencing various problems such as undermined appearance, low production efficiency and poor mechanical characteristics. Therefore, this paper seeks to develop an one-piece forming process which eliminate welding process for the cowl cross bar by applying the tube drawing process. However, it was predicted that a conventional tube drawing can not be applied directly to the current part since the area reduction ratio of the drawing process reaches 51.7% which exceeds the general limiting value. Therefore, in this study, a combined drawing process which adds a compressive force to a tensile force of the conventional drawing process was proposed and 2-stage drawing process was designed by using CAE analyses. In addition, drawing tryouts were carried out by using the manufactured combined drawing machine in order to verify the designed process.

Removable shear connector for steel-concrete composite bridges

  • Suwaed, Ahmed S.H.;Karavasilis, Theodore L.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.107-123
    • /
    • 2018
  • The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast construction tolerances, and allows rapid bridge disassembly to drastically reduce the time needed to replace any deteriorating structural component (e.g., the bridge deck). A series of 11 push-out tests highlight why the novel structural details of the FBSC result in superior shear load-slip displacement behavior compared to welded shear studs. The paper also quantifies the effects of bolt diameter and bolt preload and presents a design equation to predict the shear resistance of the FBSC.