• 제목/요약/키워드: Weld-zone

검색결과 659건 처리시간 0.022초

스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가 (Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave)

  • 이진경;이준현
    • 비파괴검사학회지
    • /
    • 제35권1호
    • /
    • pp.46-51
    • /
    • 2015
  • 스테인레스강은 고온, 고압에서 부식에 효과적인 재료로써 액화수소, 가스 등을 저장하는 저장용기 및 고온의 유체들을 이송하는 배관재료로 널리 사용되고 있다. 일반적으로 스테인레스강의 용접은 TIG용접이 이용되어지고 있으며 용접후 용접부위에 발생하는 초기 용접결함 및 사용중 발생하는 열적 피로균열 등이 재료의 신뢰성을 저하하는 요인들로 지적되고 있다. 본 논문에서는 레이저 유도초음파를 이용하여 초기 용접결함에 대한 초음파 특성 규명을 위하여 스테인레스강의 용접부에 인공균열의 크기를 5 mm, 10 mm, 20 mm 길이로 가공후 유도초음파의 결함 길이 변화에 따른 특성을 평가하였다. 배관의 두께 등을 고려하여 L(0,1)모드와 L(0,2)모드를 이용하였으며 각각의 모드가 결함의 길이 변화에 따라 변화를 보였지만 L(0,2)모드가 L(0,1)모드보다 결함 길이에 더욱 민감하게 반응하였다. 본 연구에서는 L(0,1)모드와 L(0,2)모드의 진폭비를 구하여 결함과의 연관성을 평가한 결과 결함 길이와 선형적인 관계를 나타냄으로써 각 모드를 단독적으로 평가하는 것보다는 두 모드의 진폭비를 이용하여 결함을 평가하는 것이 더욱 효과적임을 알 수 있었다.

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

EH36-TM강의 대입열 EGW 용접부 저온 인성에 미치는 미세 조직의 영향 (Effects of Microstructures on the Toughness of High Heat Input EG Welded Joint of EH36-TM Steel)

  • 최우혁;조성규;최원규;고상기;한종만
    • Journal of Welding and Joining
    • /
    • 제30권1호
    • /
    • pp.64-71
    • /
    • 2012
  • The characteristics of high heat input (342kJ/cm) EG (Electro Gas Arc) welded joint of EH36-TM steel has been investigated. The weld metal microstructure consisted of fine acicular ferrite (AF), a little volume of polygonal ferrite (PF) and grain boundary ferrite (GBF). Charpy impact test results of the weld metal and heat affected zone (HAZ) met the requirement of classification rule (Min. 34J at $-20^{\circ}C$). In order to evaluate the relationship between the impact toughness property and the grain size of HAZ, the austenite grain size of HAZ was measured. The prior austenite grain size in Fusion line (F.L+0.1 mm) was about $350{\mu}m$. The grain size in F.L+1.5 mm was measured to be less than $30{\mu}m$ and this region was identified as being included in FGHAZ(Fine Grain HAZ). It is seen that as the austenite grain size decreases, the size of GBF, FSP (Ferrite Side Plate) become smaller and the impact toughness of HAZ increases. Therefore, the CGHAZ was considered to be area up to 1.3mm away from the fusion line. Results of TEM replica analysis for a welded joint implied that very small size ($0.8\sim1.2{\mu}m$) oxygen inclusions played a role of forming fine acicular ferrite in the weld metal. A large amount of (Ti, Mn, Al)xOy oxygen inclusions dispersed, and oxides density was measured to be 4,600-5,300 (ea/mm2). During the welding thermal cycle, the area near a fusion line was reheated to temperature exceeding $1400^{\circ}C$. However, the nitrides and carbides were not completely dissolved near the fusion line because of rapid heating and cooling rate. Instead, they might grow during the cooling process. TiC precipitates of about 50 ~ 100nm size dispersed near the fusion line.

RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험 (Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections)

  • 이철호;전상우;김진호
    • 한국강구조학회 논문집
    • /
    • 제14권4호
    • /
    • pp.557-566
    • /
    • 2002
  • 본 논문은 4개의 철골모멘트 접합부에 대한 반복재하 실물대(實物大) 실험결과를 요약한 것이다. 주요 실험변수는 기둥과 보의 접합방식 (볼트접합 대 용접) 및 패널존의 강도 (강한 패널존 대 중간강도 패널존)이다. 중간 패널존 강도를 갖는 시험체는 패널존과 RBS 영역 모두에서 균형잡힌 방식으로 에너지가 소산되도록 고려하여 설계된 것으로 패널존 보강비용을 줄이고자 시도한 경우이다. 보웨브가 용접으로 접합된 경우의 시험체들은 특별연성모멘트골조에 요구되는 충분한 접합부 회전성능을 보여 주었지만, 웨브를 볼트로 접합한 시험체들은 스캘럽을 가로지르는 보플랜지의 조기 취성파괴로 인해 열등한 내진성능을 노출하였다. 보웨브를 볼트로 접합하면 비용을 줄일 수 있으나 원래 보단면의 전소성모멘트를 기둥에 전달하기 어려운 것으로 나타났다. 본 연구에서 적용된 것과 같이 양질의 용접시공에 의해 일단 그루브 용접부 자체의 취성파괴 문제가 해결되고 나면, 용접접근공내에 위한 보플랜지 모재의 파단이 다음의 문제로 대두됨을 알 수 있다. 용접접근공 내의 보 플랜지 파단문제를 역학적인 측면에서 이해하는데 도움이 되는 해석적 연구도 수행되었다.

핫스탬핑강의 너트 프로젝션 용접시 너트 재질이 용접부 파단모드 변화에 미치는 영향 (Effect of Chemical Composition of Nut Material on the Fracture Behavior in Nut Projection Welding of Hot-Stamped Steel Sheet)

  • 임성상;김영태;천은준;남기성;박영환;김재완;이선영;최일동;박영도
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.1-10
    • /
    • 2016
  • The use of materials for modern lightweight auto-bodies is becoming more complex than hitherto assemblies. The high strength materials nowadays frequently used for more specific fields such as the front and rear sub frames, seat belts and seats are mounted to the assembled body structure using bolt joints. It is desirable to use nuts attached to the assembled sheets by projection welding to decrease the number of loose parts which improves the quality. In this study, nut projection welding was carried out between a nut of both boron steel and carbon steel and ultra-high strength hot-stamped steel sheets. Then, the joints were characterized by optical and scanning electron microscope. The mechanical properties of the joints were evaluated by microhardness measurements and pullout tests. An indigenously designed sample fixture set-up was used for the pull-out tests to induce a tensile load in the weld. The fractography analysis revealed the dominant interfacial fracture between boron steel nut weld which is related to the shrinkage cavity and small size fusion zone. A non-interfacial fracture was observed in carbon steel nut weld, the lower hardness of HAZ caused the initiation of failure and allowed the pull-out failure which have higher in tensile strengths and superior weldability. Hence, the fracture load and failure mode characteristics can be considered as an indication of the weldability of materials in nut projection welding.

시험 및 유한요소법을 이용한 마그네슘 합금 마찰교반용접부 온도 특성 평가 (Evaluation on Temperature of FSW Zone of Magnesium Alloy using Experiment and FE Analysis)

  • 선승주;김정석;이우근
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.434-441
    • /
    • 2016
  • 마찰교반용접은 소재와 용접 툴 간의 마찰열에 의해 접합되는 고상접합 공정이다. 용접 시 발생하는 입열량에 따라 용접부의 건전성이 결정된다. 과도한 입열량은 산화물 및 기공결함의 원인이 되며, 불충분한 입열량은 터널결함 등의 문제점이 발생한다. 따라서 마찰교반용접부 중심에서의 온도 이력을 파악하는 것은 건전성을 판단하는 데 있어 매우 중요한 연구이다. 본 연구에서는 마그네슘 합금소재에 대한 마찰교반용접부의 온도분포 특성을 평가하였다. 이를 위해 유한요소해석을 통한 마찰교반용접부의 유동장 및 온도분포를 예측하였다. 유한요소해석을 위해 용접 툴 형상 간소화, 마찰 조건 선정 등 선행 해석을 수행하고 최적조건을 도출하였다. 또한, 해석모델의 검증을 위해 마그네슘 합금의 맞대기 마찰교반용접 시 용접부 중앙에서의 온도를 측정하였다. 유한요소해석 결과 마찰교반용접부의 온도에 영향을 미치는 주요변수의 기여도는 회전속도가 이송속도보다 더 높은 것으로 판단된다. 또한, 용접부 중심에서의 실측 온도와 유한요소해석 결과 사이에 5.4% - 7.7% 수준의 오차 내에서 잘 일치하였다.

[논문 철회] 친환경 레져선박에 적용되는 Al 5083 합금의 인장특성 및 열응력에 미치는 용접조건의 영향 ([Retracted] The Effect of Welding Conditions on Tensile Characteristics and Thermal Stress of Al 5083 Alloy Applied to Co-environmental Leisure Ships)

  • 문병영;이기열;김규선
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.548-555
    • /
    • 2014
  • As a considerable, experimental approach, an Auto-carriage type of $CO_2$ welding machine and a MIG(Metal Inert Gas) welding robot under inert gas atmosphere were utilized in order to realize Al 5083 welding applied to hull and relevant components of green Al leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, non-ferrous material, applied to manufacturing of co-environmental Al leisure ships. With respect to welding condition to minimize the thermal deformation, 150A and 16V at the wire-feed rate of 6mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(Heat Affected Zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5mm thickness, 284.62MPa of tensile strength and 11.41% of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification(WPS).

토션 바재의 마찰용접에 관한 연구(I) -마찰용접기술의 최적화에 대하여- (Study on Friction Welding of Torsion Bar Material(1) -Optimization of Friction Welding Technique-)

  • 오세규;이종두
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.101-109
    • /
    • 1990
  • The friction welding has more technical and economic advantages than the other welding processes. As this welding process has the characteristics such as curtailment of production time, materials, cost reduction, etc., it has been widely used in production of various mechanical components which have complex shapes. So, this paper deals with optimizing the friction welding conditions and analyzing various mechanical properties of the friction welded joints of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) The quantitative relation between heating time($t_{1}$, sec) and total upset(U, mm)can be obtained. The empirical formula obtained is ; U = 3.29$t_{1}$ + 1.6 2) The tensile strength($\sigma_{t}$, kgf/$mm^{2}$) of friction welding joints as post weld heat treated(PWHT) depends upon heating time($t_{1}$, sec) quantitatively and the empirical formula obtained is ; $\sigma$= -5.1$t_{1}\;^{2}$+44.90$t_{1}$+45.2 3) It is certain that the optimum condition for friction welded joints of SUP9A steel bars of diameter 14.5mm is, considering on various properties such as tensile strength, torsional strength, impact energy and strain of the joints after PWTH ; n = 2000rpm, $P_{1}$=8kgf/$mm^{2}$, $P_{2}$=20kgf/$mm^{2}$, $t_{1}$=4sec, $t_{2}$=3sec 4) The tensile strength, torsional strength and hardness were increased with the increased with the increasing carbon equivalent, but toughness was decreased.

  • PDF

해양차량 경량화용 마그네슘합금의 마찰용접 및 AE 특성 (Friction Welding and AE Characteristics of Magnesium Alloy for Lightweight Ocean Vehicle)

  • 공유식;이진경;강대민
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, friction welded joints were constructed to investigate the mechanical properties of welded 15-mm diameter solid bars of Mg alloy (AZ31B). The main friction welding parameters were selected to endure reliable quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bonds in the area and heat affected zone (HAZ), and macrostructure investigations. The study reached the following conclusions. The tensile strength of the friction welded materials (271 MPa) was increased to about 100% of the AZ31B base metal (274 MPa) under the condition of a heating time of 1 s. The metal loss increased lineally with an increase in the heating time. The following optimal friction welding conditions were determined: rotating speed (n) = 2000 rpm, heating pressure (HP) = 35 MPa, upsetting pressure (UP) = 70 MPa, heating time (HT) = 1 s, and upsetting time (UT) = 5 s, for a metal loss (Mo) of 10.2 mm. The hardness distribution of the base metal (BM) showed HV55. All of the BM parts showed levels of hardness that were approximately similar to friction welded materials. The weld interface of the friction welded parts was strongly mixed, which showed a well-combined structure of macro-particles without particle growth or any defects. In addition, an acoustic emission (AE) technique was applied to derive the optimum condition for friction welding the Mg alloy nondestructively. The AE count and energy parameters were useful for evaluating the relationship between the tensile strength and AE parameters based on the friction welding conditions.

비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가 (Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds)

  • 최철영;김준기;홍재근;염종택;박영도
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.