• Title/Summary/Keyword: Weld quality

Search Result 535, Processing Time 0.023 seconds

Mixed Mode Control of Constant Power and Constant Current for Resistance Spot Welder using Dynamic Resistance Characteristics (동저항 특성을 이용한 저항 스폿 용접기의 정전력과 정전류의 혼합모드 제어)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1571-1577
    • /
    • 2015
  • A new mixed mode control of constant power and constant current for resistance spot welding inverter is proposed to improve the weld quality. The conventional control scheme adopts constant current or constant power control mode, however, it is not easy to guarantee the high weld quality because of the nonlinear resistance characteristics of the welding point. The proposed method utilizes the nonlinear characteristics by measuring the dynamic resistance in real time. Therefore, it is possible for the welder to be controlled adaptively depending on the welding state. Experimental results show that the proposed control scheme improves the weld quality by 6.8 times compared with the conventional constant current mode control.

A Study on the Selection of Fillet Weld Conditions by Considering the Tack Welds (가접부를 고려한 필릿 용접조건의 선정에 관한 연구)

  • Lee, Jun-Young;Kim, Jae-Woong;Kim, Cheol-Hee
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.29-36
    • /
    • 2006
  • In this study, an experimental method for the selection of optimal welding condition was proposed in the fillet weld which was done over the tack weld. This method used the response surface analysis in which the leg length and the reinforcement height were chosen as the quality variables of the weld bead profile. The overall desirability function, which was combined desirability function fur the two quality variables, was employed as the objective function for getting the optimal welding condition. In the experiments, the target values of the leg length and the reinforcement height are 6m and zero respectively for the horizontal fillet weld of 10mm thickness mild steel. The optimal welding conditions could predict the weld bead profile(leg length and reinforcement height) as 6.00mm and 0.19mm without tack weld and 6.00mm and 0.48mm with tack weld. from a series of welding test, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

Weld Quality Monitoring System Development Applying A design Optimization Approach Collaborating QFD and Risk Management Methods (품질 기능 전개법과 위험 부담 관리법을 조합한 설계 최적화 기법의 용접 품질 감시 시스템 개발 응용)

  • Son, Joong-Soo;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.207-216
    • /
    • 2000
  • This paper introduces an effective system design method to develop a customer oriented product using a design optimization process and to select a set of critical design paramenters,. The process results in the development of a successful product satisfying customer needs and reducing development risk. The proposed scheme adopted a five step QFD(Quality Function Deployment) in order to extract design parameters from customer needs and evaluated their priority using risk factors for extracted design parameters. In this process we determine critical design parameters and allocate them to subsystem designers. Subsequently design engineers develop and test the product based on these parameters. These design parameters capture the characteristics of customer needs in terms of performance cost and schedule in the process of QFD, The subsequent risk management task ensures the minimum risk approach in the presence of design parameter uncertainty. An application of this approach was demonstrated in the development of weld quality monitoring system. Dominant design parameters affect linearity characteristics of weld defect feature vectors. Therefore it simplifies the algorithm for adopting pattern classification of feature vectors and improves the accuracy of recognition rate of weld defect and the real time response of the defect detection in the performance. Additionally the development cost decreases by using DSP board for low speed because of reducing CPU's load adopting algorithm in classifying weld defects. It also reduces the cost by using the single sensor to measure weld defects. Furthermore the synergy effect derived from the critical design parameters improves the detection rate of weld defects by 15% when compared with the implementation using the non-critical design parameters. It also result in 30% saving in development cost./ The overall results are close to 95% customer level showing the effectiveness of the proposed development approach.

  • PDF

REAL-TIME QUALITY EVALUATION OF FRICTION WELDING OF MACHINE COMPONENTS BY ACOUSTIC EMISSION (음향방출법(AE)에 의한 기계요소재의 마찰용접 품질 실시간 평가)

  • SAE-KYOO OH
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.3-20
    • /
    • 1995
  • Development of Real-Time Quality Evaluation of Friction Welding by Acousitc Emission : Report 1 ABSTRACT : According as the friction welding has been increasingly applied in manufacturing various machine components because of its significant economic and technical advantages, one of the important concerns is the reliable quality monitoring method for a good weld quality with both joint strength and toughness in the process of its production. However no reliable nondestructive test method is available at present to determine the weld quality particularly in process of production. So this paper presents an experimental examination and quantitative analysis for the real-time evaluation of friction weld quality by acoustic emission, as a new approach which attempts finally to develop an on-line quality monitoring system design for friction welds using AE techniques. As one of the important results, it was confirmed, through this study, that AE techniques can be reliably applied to evaluating the friction weld qualify with 100% joint strength, as the cumulative AE counts occurring during welding period were quantitatively correlated with reliability at 95% confidence level to the joint strength of welds. Real-Time Evaluation of Automatic Production Quality Control for Friction Welding Machine : Report 2 Abstract : Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding machine. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation period of the welding and the tensile strength of the welded joints as well as the various welding variables, as a new approach which attempts finally to develop an on-line (or real-time) quality monitoring system and a program for the process of real-time friction welding quality evaluation by initial AE cumulative counts. As one of the important results, it was well confirmed that the initial AE cumulative counts were quantitatively and cubically correlated with reliability of 95% confidence level to the joint strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique using initial AE counts can be reliably applied to real-time strength evaluation of the welded joints, and that such a program of the system was well developed resulting in practical possibility of real-time quality control more than 100% joint efficiency showing good weld with no micro-structural defects.

  • PDF

A Study on the Weldability and the Fatigue Characteristics in Resistance pot Welding of 5182-O/6061-T6 Dissimilar Aluminum Alloy Sheets (이종 AI합금의 저항점용접부 용접성과 피로특성에 관한 연구)

  • 박진철;정원욱;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.44-52
    • /
    • 1999
  • This study deals with spot weld ability of dissimilar aluminum alloy sheets in order to take advantage of its lightweight and strength. The paper also shows the relationship between weld elements(i.e. current, welding time and tip force) and weld quality on the resistance spot weld part of the same and dissimilar Al alloy. The conclusions are: (1) Because of excessive tip force, deep indentation remained at the Al 5182 side which is lower stiffness at the dissimilar Al alloy. (2) Weld quality (i.e. tensile shear strength) of dissimilar Al alloy is superior to that of the same Al 6061 alloy. (3) As long cycles, fatigue life of spot weld specimen on dissimilar Al alloy sheets was better than that of the same Al alloy.

  • PDF

Application of Computed Radiography for Nondestructive Testing of Boiler Tube Weldments (보일러튜브 용접부 비파괴검사를 위한 컴퓨터화 방사선투과시험 적용 연구)

  • Park, S.K.;Ahn, Y.S.;Gil, D.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.95-102
    • /
    • 2009
  • A steam generator (boiler) in thermal power plants, consisting of more than 30,000 parts and components, can lead to the plant shutdown with damage to even the small part of the components; esp., like weld failures on boiler tubes. Consequently it is greatly demanded to improve the quality of the weld on the boiler tube for the stable operation of the power plants. Because of the feature of the welding, which is done past by melting the work pieces and adding a filler material that cools to become a strong coalescence, there is a great possibility that weld failures take place. As a result, it is regulated to make a non-destructive testing, like radiography test, to detect defects and flaws in the weld. The current film radiography test provides a lower image quality exceeding 2.0% of a basic quality level for a penetrameter, it is very likely to fail to detect micro defect. As a result, the prevention for the boiler tube failure has not been made effectively. In this study, computed radiography technology has been applied as a digital radiography test to the boiler tube weld, and Se-75 radiation source was used to improve the image quality, instead of Ir-192 source. As a result of this study, it is proven to save the time and cost for test and to enhance the quality level of penetrameter penetrating image, which enables to upgrade the quality of radiography test to the boiler tube weld.

  • PDF

Selection of Optimal Welding Condition in Root-pass Welding of V-groove Butt Joint (맞대기 V-그루브 이음 초층 용접에서 최적의 용접조건 선정)

  • Yun, Seok-Chul;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • In case of manufacturing the high quality welds or pipeline, the full penetration weld has to be made along the weld joint. Thus the root pass welding is very important and has to be selected carefully. In this study, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. In the experiments, the target values of the back bead width and the height are 6mm and zero respectively for the V-grooved butt weld joint of 8mm thickness mild steel. The optimal welding conditions could predict the back bead profile(bead width and height) as 6.003mm and -0.003mm. From a series of welding test, it was revealed that a uniform and full penetration weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

Welding Gap Detecting and Monitoring using Neural Networks

  • Kang, Sung-In;Kim, Gwan-Hyung;Lee, Sang-Bae;Tack, Han-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.539-544
    • /
    • 1998
  • Generally, welding gap is a serious factor of a falling-off in weld quality among various kind of weld defect. Welding gap is created between two work piece in GMAW(Gas Metal Arc Welding) of horizontal fillet weld because surface of workpiece is not flat by cutting process. In these days, there were many attempts to detect welding gap. though we prevalently use the vision sensor or arc sensor in welding process, it is difficult to detect welding gap for improvement of welding quality. But we have a trouble to find relationship between welding gap and many welding parameters due to non-linearity of welding process. As mentioned about the various difficult problem, we can detect welding gap precisely using neural networks which are able to model non-linear function. Also, this paper was proposed real-time monitoring of weld bead shape to find effect of welding gap and to estimate weld quality. Monitoring of weld bead shape examined the correlation of welding parameters with bead eometry using learning ability of neural networks. Finally, the developed system, welding gap detecting system and bead shape monitoring system, is expected to the successful capability of automation of welding process by result of simulation.

  • PDF

Nondestructive evaluation of spot weld quality using by ultrasonic measurement (초음파계측에 의한 SPOT용접품질의 비파괴평가)

  • 박익근
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.109-117
    • /
    • 1994
  • Spot welding has wide used with a high work efficiency in the automotive and aerospace industries. Up to the present, the technique mainly used to test spot welds on production lines has been entirely depended upon destructive chisel or peel testing. Therefore, it's being very important assignment to secure the NDE technique which can be evaluate spot weld quality with more efficiency and high reliability. This paper discusses the feasibility of UNDE techniques to evaluate spot weld quality. For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of a the corona bond from nugget, ultrasonic c-scan image and distribution of reflective echo amplitude was measured by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). As the results of this study, corona bond which is the most dangerous types of interface defects can be successfully detected, as well as expulsion and voids. Ultrasonic testing results were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be successfully measured with the accuracy of 0.8 mm.

  • PDF

Quality assurance algorithm using fuzzy reasoning for resistance spot weldings (퍼지추론을 이용한 저항 점용접부위의 품질평가 알고리듬)

  • Kim, Joo-Seok;Lee, Jae-Ik;Lee, Sang-ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.644-653
    • /
    • 1998
  • In resistance spot weld, the assurance of weld quality has been a long-standing problem. Since the weld nuggets if resustance spot welding form between the workpieces, visual detection of defects in usually impossible. Welding quality of resistance spot welding can be verified by non destructive and destructive inspections such as X-Ray inspection and testing of weld strength. But these tests, in addition to being time-consuming and costly, can entail risks due to sampling basis. The purpose of this study is the development of the monitoring system based on fuzzy inference, aimed at diagonosis of quality in resistance spot welding. The fuzzy inference system consists of fuzzy input variables, fuzzy membership functions and fuzzy rules. For inferring the welding quality(strength), the experimental data of the spot welding were acquired in various welding conditions with the monitoring system designed. Some fuzzy input variables-maximum, slop and difference values of electrode movement signals-were extracted from the experimental data. It was confirmed that the fuzzy inference values of strength have a .${\pm}$5% error in comparison with actual values for the selected welding conditions(9-10.5KA, 10-14 cycle, 250-300 $kg_f$). This monitoring system can be useful in improving the quality assurance and reliability of the resistance spot welding process.