• 제목/요약/키워드: Weld metal zone

검색결과 351건 처리시간 0.02초

SM570, POSTEN60 및 80 강재의 피로균열성장특성 (Characteristics of Fatigue Crack Growth in SM570, POSTEN60, 80 Steel)

  • 정영화;김익겸;강성립;남왕현;김은성
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.329-336
    • /
    • 2001
  • In this study, a series of fatigue tests are carried out in order to estimate quantitatively the characteristics of fatigue crack growth rate for high strength steels of SM570, POSTEN60, and POSTEN80 steel, that is, the influence on fatigue crack growth rate according to the welding line, the characteristics of fatigue crack growth according to the welding method and the kinds of steel, and the characteristics of fatigue crack growth for base metal, heat affected zone and weld metal. From the test results, in case that the notch if parallel to welding line, it knows that the retardations of fatigue crack growth rate in crack tip at early stage increase remarkably than in case that the notch is perpendicular to welding line due to compressive residual stress. And the characteristics of fatigue crack growth rate according to welding method are that the dispersion of fatigue crack growth rate in case of FCAW method is smaller than that of SAW method. Also, it knows that the fatigue crack growth rate converges in high stress intensity factor range.

  • PDF

보일러용 고강도 T23강의 용접부 손상 원인 분석 (Diagnosis of cracking in T23 welds for power plant application)

  • 박기덕;안종석;신동혁;이창희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.61-61
    • /
    • 2009
  • This paper has been performed in order to figure out the reason of failure in T23 weldments used for boiler tube at 550 $^{\circ}C$. Defects such as cracks and cavities occurred in CGHAZ (coarse grain heat-affected-zone) and multi pass of weld metal, and these crack propagated along grain boundary. Microstructure evolution such as grain growth and carbide precipitation was investigated by optical microscope (OM), transmission electron microscope(TEM). Moreover, Auger electron spectroscope (AES) was employed in order to examine segregation along the grain boundaries. There is significant difference in grain size and precipitation distribution in the region where cracking took place. In addition, sulfur segregation was observed. Based on the results of this investigation, it has been possible to establish that this type of cracks were consistent with reheat cracking and creep damage. Selection of optimal filler metal, heat input, and PWHT temperature is required for prevention in order to avoid this type of cracking.

  • PDF

마찰교반용접된 7075-T651 알루미늄 판재의 피로균열전파의 거시적 및 미시적 관찰 (Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded 7075-T651 Aluminum Alloy Plates)

  • 공유식;김선진
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.62-69
    • /
    • 2014
  • In this paper, in order to investigate the effects of marco and microscopic observations of fatigue crack growth in friction stir welded (FSWed) 7075-T651 aluminum alloy plates, fatigue crack growth tests were performed under constant amplitude loading condition at room temperature with three different pre-cack locations, namely base metal (BM-CL) and two kinds of pre-crack locations in welded joints, weld metal (WM-CL) and heat affected zone (HAZ-CL) specimens. The fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy plates were discussed based on the marco and microscopic fractographic observations. The marcoscopic aspects of surface crack growth path for BM-CL and HAZ-CL specimens indicate relatively straight lines, however, the crack growth paths of WM-CL specimens grow first straight and by followed toward the TMAZ and HAZ. The microscopic aspects of fatigue fracture for BM-CL and HAZ-CL specimens indicate typical fatigue striation, but WM-CL showed intergranular fracture pattern by micro structural changes of FSW process.

A cumulative damage model for extremely low cycle fatigue cracking in steel structure

  • Huanga, Xuewei;Zhao, Jun
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.225-236
    • /
    • 2017
  • The purpose of this work is to predict ductile fracture of structural steel under extremely low cyclic loading experienced in earthquake. A cumulative damage model is proposed on the basis of an existing damage model originally aiming to predict fracture under monotonic loading. The cumulative damage model assumes that damage does not grow when stress triaxiality is below a threshold and fracture occurs when accumulated damage reach unit. The model was implemented in ABAQUS software. The cumulative damage model parameters for steel base metal, weld metal and heat affected zone were calibrated, respectively, through testing and finite element analyses of notched coupon specimens. The damage evolution law in the notched coupon specimens under different loads was compared. Finally, in order to examine the engineering applicability of the proposed model, the fracture performance of beam-column welded joints reported by previous researches was analyzed based on the cumulative damage model. The analysis results show that the cumulative damage model is able to successfully predict the cracking location, fracture process, the crack initiation life, and the total fatigue life of the joints.

해양구조물 RE36강의 용접부 부식거동 및 SSRT법에 의한 기계적 특성에 관한 연구 (A Study on the Corrosion Rehavior and Mechanical Property by SSRTTest of Welding Part of RE36 Steel for Marine Structure)

  • 김종성;김진경;김종호;이명훈;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.460-469
    • /
    • 2000
  • A study on the corrosion behavior of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential and corrosion current density measurement of weld metal(WM), base metal (BM) and heat affected zone(HAZ), Al anode generating current and Al anode weight loss quantity in case of cathodic protection. And we carried out slow strain rate test(SSRT) in order to research mechanical properties such as stress at maximum load, percent strain, time to fracture and strain to failure ratio etc and to find out limiting cathodic polarization potential for hydrogen embrittlement with applied cathodic polarization potential. Hardness of HAZ part was the highest among those three parts and also galvanic corrosion susceptibility was the highest in HAZ part among those three parts due to the lowest corrosion potential than other parts. However corrosion current density was the highest in WM part among those three parts. And the optimum cathodic polarization potential showing the best mechanical properties obtained by SSRT method with applied constant cathodic potential was from - 770mV to - 875mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement on the mechanical properties was under - 900mV(SCE).

  • PDF

Al7075-T651의 마찰교반용접된 접합부의 피로균열전파율의 통계적 분포 (Statistical Distribution of Fatigue Crack Growth Rate for Friction Stir Welded Joints of Al7075-T651)

  • 안석환;김선진
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.86-93
    • /
    • 2013
  • This paper deals with the effects of driving force and material properties on statistical distribution of fatigue crack growth rate (FCGR) for the friction stir welded joints of Al 7075-T651 aluminum plate. In this work, the statistical probability distribution of fatigue crack growth rate was analyzed by using our previous constant stress intensity factor range controlled fatigue crack growth test data. As far as this study are concerned, the statistical probability distribution of fatigue crack growth rate for the friction stir welded (FSWed) joints was found to evaluate the variability of fatigue crack growth rate for base metal (BM), heat affected zone (HAZ) and weld metal (WM) specimens. The probability distribution of fatigue crack growth rate for FSWed joints was found to follow well log-normal distribution. The shape parameter of BM and HAZ was decreased with increasing the driving force, however, the shape parameter of WM was decreased and increased with increasing the driving force. The scale parameter of BM, HAZ and WM was increased with the driving force.

[논문 철회] 친환경 레져선박에 적용되는 Al 5083 합금의 인장특성 및 열응력에 미치는 용접조건의 영향 ([Retracted] The Effect of Welding Conditions on Tensile Characteristics and Thermal Stress of Al 5083 Alloy Applied to Co-environmental Leisure Ships)

  • 문병영;이기열;김규선
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.548-555
    • /
    • 2014
  • As a considerable, experimental approach, an Auto-carriage type of $CO_2$ welding machine and a MIG(Metal Inert Gas) welding robot under inert gas atmosphere were utilized in order to realize Al 5083 welding applied to hull and relevant components of green Al leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, non-ferrous material, applied to manufacturing of co-environmental Al leisure ships. With respect to welding condition to minimize the thermal deformation, 150A and 16V at the wire-feed rate of 6mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(Heat Affected Zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5mm thickness, 284.62MPa of tensile strength and 11.41% of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification(WPS).

비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가 (Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds)

  • 최철영;김준기;홍재근;염종택;박영도
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

600MPa급 자동차용 석출경화형 고장력강판 Nd:YAG 레이저 용접부의 특성에 미치는 용접속도의 영향 (Effect of the welding speed on the characteristics of Nd:YAG laser welds for automotive application : 600MPa PH high strength steel)

  • 한태교;정병훈;강정윤
    • 한국레이저가공학회지
    • /
    • 제10권3호
    • /
    • pp.25-32
    • /
    • 2007
  • The effect of welding speed on the weldability, microstructures, hardness, tensile property of Nd:YAG laser welding joint in 600MPa grade precipitation hardening high strength steel was investigated. A shielding gas was not used, and bead-on-plate welding was performed using various welding speeds at a power of 3.5kW. Porosity in the joints occurred at 1.8m/min, but were not observed over the welding speed of 2.1m/min. However, spatter occurred over the welding speed of 6.6m/min. The hardness was the highest at heat affected zone(HAZ) near fusion zone(FZ), and was decreased on approaching to the base metal. The maximum hardness increased with increasing welding speed. The microstructure of FZ was composed of coarse grain boundary ferrite and bainite(upper) but the HAZ near the FZ contained bainite(Lower) and fine ferrite at a low welding speed. With increasing welding speed, ferrite at the FZ and the HAZ became finely and upper binite changed to lower bainite. In a perpendicular tensile test to the weld line, all specimens were fractured at the base metal, and the tensile strength and the yield strength of joints was equal to those of raw material. Elongation was found to be lower than that of the raw material.

  • PDF

용접방법에 따른 구조용강 용접 접합부의 저온 충격인성 특성 (Effects of Welding Processes on the Low Temperature Impact Toughness of Structural Steel Welded Joints)

  • 이진형;신현섭;박기태
    • 한국강구조학회 논문집
    • /
    • 제24권6호
    • /
    • pp.693-700
    • /
    • 2012
  • 본 논문에서는 서로 다른 용접방법 및 용접재료를 사용하여 제작한 강구조물 용접부 및 열영향부에 대하여 샤르피 충격시험 (Charpy Impact Test) 및 조직검사를 통한 저온에서의 충격인성 평가를 실시하여, 극지 및 시베리아와 같은 저온환경에 노출된 강구조물 용접 접합부의 충격인성을 확보할 수 있는 용접방안에 대한 연구를 수행하였다. 사용된 용접방법은 강구조물 제작시 널리 쓰이는 SMAW (Shielded Metal Arc Welding)와 FCAW (Flux Cored Arc Welding)이며, 각 용접방법에 따른 저온강용 용접봉을 사용하여 시험판을 제작하였다. 서로 다른 용접방법으로 제작된 시험판의 용접부 및 열영향부에 대하여 샤르피 충격시험을 통한 저온에서의 충격흡수에너지 값과 미세조직 분석을 통하여 용접방법에 따른 구조용강 용접 접합부의 저온 충격인성을 평가하였다. 시험결과 극한지에 강구조물을 적용하기 위해서는 저입열 용접인 SMAW 용접방법 및 그에 따른 저온강용 용접봉을 사용하는 것이 충격인성 확보 측면에서 유리하다는 것을 알 수 있었다.