• 제목/요약/키워드: Weld geometry

검색결과 163건 처리시간 0.021초

차체 플러그 용접품질에 영향을 미치는 아크 위치에 대한 실험적 기초 연구 (A Study on the Arc Position which Influence on Quality of Plug Welding in the Vehicle Body)

  • 이경민;김재성;이보영
    • Journal of Welding and Joining
    • /
    • 제30권3호
    • /
    • pp.66-70
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body is spot welding. And $CO_2$ arc welding is used in a small part. In production field, $CO_2$ arc welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ arc welding process frequently. But $CO_2$ arc welding process should be used at robot interference parts and closed parts where spot welding couldn't. $CO_2$ welding is divided into lap welding and plug arc spot welding. In case of plug arc spot welding, burn through and under fill were caused in various welding environment such as different thickness combinations of base metal, teaching point, over the two steps welding and inconsistent voltage/current. It makes some problem like poor quality of welding area and decrease the productivity. In this study, we will evaluate the effect of teaching point through the weld pool behavior and bead geometry in the arc spot welding at the plut hole. Welding position is horizontal position. And galvanized steel sheet of 2.0mm thickness that has plug hole of 6mm diameter was used. Teaching point was changed by center, top, bottom, left and right of the plug hole. At each condition, the phenomenon of weld pool behavior was confirmed using a high-speed camera. As the result, we find the center of plug hole is the most optimal teaching point. In the other teaching point, under fill was occurred at the plug hole. This phenomenon is caused by gravity and surface tension. For performance of arc spot welding at the plug hole, the teaching condition should be controlled at a center of plug hole.

ECA 기법을 이용한 해양구조물의 결함 평가 (Flaw Assessment on an Offshore Structure using Engineering Criticality Analysis)

  • 강범준;김유일;류철호;기혁근;박성건;오영태
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.435-443
    • /
    • 2015
  • Offshore structure may be considerably vulnerable to fatigue failure while initial flaw propagates under cyclic loading, so crack propagation analysis/fracture/yield assessments about initial flaw detected by NDT are necessarily required. In this paper, case studies have been conducted by flaw assessment program using engineering criticality analysis (ECA) approach. Variables such as flaw geometry, flaw size, structure geometry, dynamic stress, static stress, toughness, crack growth rate, stress concentration factor (SCF) affected by weld are considered as analysis conditions. As a result, the safety of structure was examined during fatigue loading life. Also, critical initial flaw size was calculated by sensitivity module in the developed program. The flaw assessments analysis using ECA approach can be very useful in offshore industries owing to the increasing demand on the engineering criticality analysis of potential initial flaws.

레이저 용접된 박판 지르코늄 합금의 피로특성 (Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet)

  • 정동희;김재훈;윤용근;박준규;전경락
    • Journal of Welding and Joining
    • /
    • 제30권1호
    • /
    • pp.59-63
    • /
    • 2012
  • The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and maintains geometry from external impact load and cyclic stress by the vibration of nuclear fuel rod, it is necessary to have sufficient strength against dynamic external load and fatigue strength. In this study, the mechanical properties and fatigue characteristics of laser beam welded zircaloy thin sheet are examined. The material used in this study is a zirconium alloy with 0.66 mm of thickness. The fatigue strength under cyclic load was evaluated at stress ratio R=0.1. S-N curves are presented with statistical testing method recommend by JSME- S002 and compared with S-N curves at R.T. and $315^{\circ}C$. As a result of the experimental approach, the design guide of fatigue strength is proposed and the results obtained from this study are expected to be useful data for spacer gird design.

기계적 프레스 접합부의 강도 평가에 관한 실험적 연구 (An Experimental Study on the Strength Evaluation of Mechanical Press Joint)

  • 박영근;정진성;김호경;이용복
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.438-448
    • /
    • 2000
  • Mechanical press joining technique has been used in sheet metal joining processes because of its simple process and possibility of joining dissimiliar metals, such as steel and aluminum. The static and cyclic behavior of single overlap AI-alloy and steel(SPCC) joints has been investigate. Relationships were developed to estimate the strength of the joint taking into consideration base metal strength properties and the geometry of the joint. Fatigue test results have shown that fatigue resistance of the SPCC mechanical press joints is almost equal to that of the spot weld at the life of $10^6$ cycles. Also, the dissimilar material jointed specimen with upper SPCC plate and button diameter corresponding to the nugget diameter of the spot welded specimen has almost same strength as the same material jointed specimen and as the spot welded specimen.

마찰교반용접법을 이용한 2피스 알루미늄 휠의 개발 (Development of the Two-piece Aluminum Wheels Using the Friction Stir Welding)

  • 최인영;강영준;김안드레이;안규생
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.700-707
    • /
    • 2013
  • Owing to high oil prices and environmental issues, the automobile industry has conducted considerable research and made large investments to manufacture a high-efficiency automobiles. In the case of automobile wheels in which a lightweight material is used to increase the fuel efficiency a mold is used to increase the production efficiency; however, the use of the molding method for this purpose is very expensive. Therefore an automobile wheel consists of two parts. In this study a two-piece automobile wheel is manufactured by the friction stir welding(FSW) of Al6061-T6 to reduce the manufacturing cost and process complexity. The FSW welding tool geometry and rotational speed, and the feed rate are key factors that significantly affect the weld strength. Therefore tensile tests were conducted on specimens produced using various welding conditions, and the optimal FSW welding conditions were applied to manufacture aluminum wheels. To ensure reliability, prototype aluminum wheels were manufactured and their mechanical reliability and safety were evaluated using a durability test, fatigue durability test, and impact test. Through this study, aluminum wheel production was made possible using the FSW method.

이동 열원을 고려한 전자빔 용접의 유한요소해석 (Fininte element analysis of electron beam welding considering for moving heat source)

  • 조해용;정석영;김명한;조창용;이제훈;서정
    • 한국레이저가공학회지
    • /
    • 제4권1호
    • /
    • pp.21-28
    • /
    • 2001
  • Simulation on the electron beam welding of Al 2219 alloy was carried out by using commercial FEM code MARC, which encounters moving heat sources. Due to axisymmetry of geometry, a half of the cylinder was simulated. A coupled thermo-mechanical analysis was carried out and subroutine for heat flux was substituted in the program. The material properties such as specific heat, heat transfer coefficient and thermal expansion coefficient were given as a function of temperature and the latent heat associated with a given temperature range is considered. As a result, the proper beam power is 60㎸${\times}$60㎃ and welding speed is 1∼1.5 m/min. The residual stress in the heat-affected zone as well as the fusion zone does not increase. It is necessary to use jigs for preventing distortion of cylinder and improving weld quality.

  • PDF

레이저 변위센서를 이용한 용접선 자동추적에 관한 연구 (A Stuy on Automatic Seam Tracking of Arc Welding Using an Laser Displacement Sensor)

  • 양상민;조택동;서송호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.680-684
    • /
    • 1996
  • Welding systems cannot adapt to changes in the joint geometry which may occur due to a variety of reason. Automatic seam tracking technigue is essential to adjust the welding torch position in real time as it moves along the seam. Automatic tracking system must keep the welding speed constant unrelation to the change of the welding path. Therefore, the information from the laser displacement sensor must be converted into the input to operate the X-Y table and to rotate the desired torch position by proposed algorithm. In this research, laser displacement sensor is used as a seam finder in the automatic tracking system. X-Y moving table manipulated by ac servo motor controls the position and velocity of the torch-and-sensor part. DC motor controls the position and velocity of the torch. X-Y table controls the position of sensor and relative position of torch is controlled by dc motor which is mounted at sensor-and-torch part. Sensor is always ahead of torch to preview the weld line. From the experimental results, we could see the possiblity that the laser displacement sensor can be used as a seam finder in welding process and that the seam tracking system controlled by proposed algorithm is well done.

  • PDF

자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 용접속도와 판재간격에 따른 용접특성 연구 (Effects of the Gap and the Speed on the Lap-Joint $CO_2$ Laser Welding of Automotive Steel Sheets)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.510-516
    • /
    • 2002
  • Recently the laser welding technology has been applied increasingly for the automotive bodies. But the lap joint laser welding for 3 dimensional automotive body is new while the butt joint laser welding is well known as the tailored blank technology. In this study, the process window was found for the full penetration welding of the lap joint of the 1mm-thick high strength steel sheets. The limit curves and characteristic curves were suggested to define the boundaries and the contour lines in a space of the welding speed and the gap size. The characteristics of the weld sectional geometry were used to determine the limit curves. They are bead width, penetration depth and sectional area. After the observed data was analysed carefully, it was noticed that there was a transition point at which the sectional shape was changed and the bead area jumped as the welding speed was increased. Also a new concept of 'input energy Per volume' was suggested to distinguish the difference at the transition Point. The difference of sectional areas at the transition point can be related to the dynamic keyhole phenomena.

ATOS 80 고장력강의 보호가스량에 따른 용접부 방사선검사에 관한 연구 (A Study on Indications in Radiographic Tests in Welding Specimens According to Shielded Amounts of ATOS 80 High-strength Steel)

  • 백정환;최병기
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.910-914
    • /
    • 2012
  • In constructing all kinds of equipment and steel structures, discontinuous areas such as weld defects formed in a welded structure tend to generate cracks that will result in damage. In this study, ATOS high-strength steel welding becomes important in butt welding where the tensile strength of the steel is over 80kg/$mm^2$. Structural discontinuities such as joints are more susceptible cracks in part due to their repeated loading and fatigue crack growth. The quality of parts produced depend or the shielded amounts of steel and on the skill of the welders in making strong welds. It is true that there are many factors that can be used to generate a lot of research in this area. However geometry and load conditions due to the combined effects with many issues could be solved through this study. Butt welding material at a plate thickness of 12t in ATOS 80 high-strength steel with a 4 pass, 20l/min, 24V/200A welder is good at making specimens with the quality shown in radiographic testing.

후판 자동용접을 위한 용접물의 갭 측정 (Recognition of Gap between base Plates for Automated Welding of Thick Plates)

  • 이화조
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.37-45
    • /
    • 1999
  • Many automated welding equipment are used in the industry. However, there are some problems to get quality welds because of the geometric error, thermal distortion, and incorrect joint fit-up. These factors can make the gap between base plates in case of a thick plate welding. The welding product with the quality welds can not be obtained without consideration of the gap. In this paper, the robot path and welding conditions are modified to get the quality weld by detecting the position and size of the gap. In this work, a low-priced laser range sensor is used. The 3-dimensional information is obtained using the motion of a robot, which holds a laser range sensor. The position and size of the gap is calculated using signal processing of the measured 3-dimensional information of joint profile geometry. The data measured by a laser range sensor is segmented by an iterative end point method. The segmented data is optimized by the least square method. The existence of gap is detected by comparing the data with the segmented shape of template. The effects of robot measuring speed and gap size are also tested. The recognizability fo the gap is verified as good by comparing the real joint profile and the calculated joint profile using the signal processing.

  • PDF