• Title/Summary/Keyword: Weld distortion

Search Result 99, Processing Time 0.024 seconds

Cumulative Angular Distortion Curve of Multi-Pass Welding at Thick Plate of Offshore Structures

  • Ha, Yunsok;Choi, Jiwon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.106-114
    • /
    • 2015
  • In the fabrication of offshore oil and gas facilities, the significance of dimension control is growing continuously. But, it is difficult to determine the deformation of the structure during fabrication by simple lab tests due to the large size and the complicated shape. Strain-boundary method (a kind of shrinkage method) based on the shell element was proposed to predict the welding distortion of a structure effectively. Modeling of weld geometry in shell element is still a difficult task. In this paper, a concept of imaginary temperature pair is introduced to handle the effect of geometric factors such as groove shape, plate thickness and pass number, etc. Single pass imaginary temperature pair formula is derived from the relation between the groove area and the FE mesh size. By considering the contribution of each weld layer to the whole weldment, multi-pass imaginary temperature is also derived. Since the temperature difference represents the distortion increment, cumulative distortion curve can be drawn by integrating the temperature difference. This curve will be a useful solution when engineers meet some problems occurred in the shipyard. A typical example is shown about utilization of this curve. Several verifications are conducted to examine the validity of the proposed methodology. The applicability of the model is also demonstrated by applying it to the fabrication process of the heavy ship block. It is expected that the imaginary temperature model can effectively solve the modeling problem in shell element. It is also expected that the cumulative distortion curve derived from the imaginary temperature can offer useful qualitative information about angular distortion without FE analysis.

On the Weld-Induced Deformation Control of Ship's Thin Plate Block (I) (선체 박판구조의 용접변형 제어에 관한 연구(I))

  • Lee, Joo-Sung;Kim, Cheul-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.496-503
    • /
    • 2007
  • Although weld-induced deformation is inevitable in shipbuilding, it is important to reduce it as low as possible during fabrication for a more efficient production of ships' blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the transverse and longitudinal deformation. in order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. Numerical simulation has been also carried out to compare the weld-induced deformation and residual stress. From the present study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.

Application of Tensioning Method for Filet Welding Deformation Reduction (필릿 용접변형 감소를 위한 장력법의 적용)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.197-200
    • /
    • 2006
  • The portion of thin plate is expected to increases as to the development of design and fabrication technology. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to fillet weld of thin plates to reduce the weld-induced deformation. For this, fillet welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present study, it has been found that the tenssoning method is effective on reduction of weld-induced deformation.

  • PDF

A Study on the Reduction of Fillet Welding Deformation by Applying the Tensioning Method (장력법을 이용한 필릿용접변형의 감소에 관한 연구)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.590-597
    • /
    • 2007
  • The portion of thin plate is expected to increases as to the development of design and fabrication technology. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper is aimed at applying the mechanical tensioning method to fillet weld of thin plates to reduce the weld-induced deformation. For this purpose, fillet welding tests have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present study, it has been found that the tensioning method is effective on reduction of weld-induced deformation.

On the Deformation Control of Ship's Thin Plate Block by Applying the Tensioning Method (장력법을 적용한 선체 박판블록의 변형감소 방안에 관한 실험연구)

  • Lee Joo-Sung;Kim Cheul-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.103-108
    • /
    • 2006
  • It has been well appreciated that reducing weld-induced deformation as law as possible is important during fabrication for a more efficient production of blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the weld-induced deformation. In order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present experimental study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.518-524
    • /
    • 2003
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • Kim, Sang-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.100-105
    • /
    • 2008
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding residual stress relaxation and fairing With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

Prediction of Welding Imperfection with Idealization of Welding and Their Accuracy (용접이상화에 의한 용접부정의 예측과 정도)

  • Lee, Jae-Yik;Chang, Kyong-Ho;Kim, You-Chul
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.15-19
    • /
    • 2013
  • In order to reduce a grand compute time in prediction of welding distortion and residual stress by 3D thermal elastic plastic analysis, idealization of welding that is methods to heat input simultaneously in all weld metal on the same welding direction is carried out on two weld joints(butt welding and fillet welding). Then, the accuracy of acquired results is investigated through the comparison of the high accuracy prediction results. The thermal conduction analysis results by idealization of welding, the temperature is raised accompany with beginning of heat input because all of weld metal is heated input at the same time. On the other side, the temperature witch predicted with high accuracy is raised at the moment heating source passes the measuring points. So, there is difference of time between idealization of welding and considering of moving heat source faithfully. However, temperature history by idealization of welding is well simulated a high accuracy prediction results.

Analysis of Weld-induced Deformation in Aluminum Plates (알루미늄 판의 용접변형해석)

  • Lee Joo-Sung;Hoi Nguyen Tan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.32-39
    • /
    • 2007
  • A three-dimensional finite element model has been developed to simulate the MIG P/S welding process of two aluminum plates. The finite element calculations are performed using ANSYS finite element code, which takes into account the thermal and mechanical non-linear material properties. The results of finite element analysis compared with those of experiment to show its validity in view of distortions. Parametric studies are carried out on the validated model to assess the effects of various factors on the final residual distortion. Large deformations, temperature dependent material properties are included in the model. Finally, the formulas of fitting curves of angular distortion transverse shrinkage, and longitudinal shrinkage have been proposed.

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF