• 제목/요약/키워드: Weld bead shape

검색결과 109건 처리시간 0.025초

Development of method to remove weld scallop and ceramic backing material of wedge type and its application

  • Kang, Sung-Koo;Yang, Jong-Soo;Kim, Ho-Kyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.315-323
    • /
    • 2015
  • The weld scallop has been used for joining T-bars. There are a lot of weld scallops in shipbuilding. It is difficult to perform scallop welding due to the inconvenient welding position. This results in many problems such as porosity, slag inclusion, etc. In this study, a new method is devised to remove weld scallops by incorporating a Ceramic Backing Material (CBM). The weld scallop is removed by an elongation of the v groove. In order to insert a CBM into the groove without a weld scallop, a wedge-shaped CBM is developed. The top side of the developed CBM is similar to the shape of a general back bead. The bottom surface has a saw-toothed shape for cutting at a suitable length. This can be attached to the root side of a face plate using adhesive tape, just like a general CBM. Welding experiments in normal and abnormal conditions are carried out and the possibility of burn-through is examined. This CBM's applicability to shipbuilding is verified.

$6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성( I ) - 프라이머 코팅조건과 갭 간극의 영향 - (The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding by $CO_2$ Laser( I ) - Effects of Primer Coating Condition and Gap Clearance -)

  • 김종도;박현준
    • Journal of Welding and Joining
    • /
    • 제23권3호
    • /
    • pp.76-82
    • /
    • 2005
  • Recently the application of laser welding technology has been considered to shipbuilding structure. However, when this technology is applied to primer coated steel, good quality weld beads are not easily obtained. Because the primer-coated layer caused the spatter, humping bead and porosity which are main part of the welding defect attributed to the powerful vaporizing pressure of zinc. So we performed experiment with objectives of understanding spatter and porosity formation mechanism and producing sound weld beads in 6mmt primer coated steels by a $CO_2$ CW laser. The effects of welding parameters; defocused distance, welding speed, coated thickness and coated position; were investigated in the bead shape and penetration depth on bead and lap welding. Alternative idea was suggested to suspend the welding defect by giving a reasonable gap clearance for primer coated thickness. The zinc of primer has a boiling point that is lower than melting point of steel. Zinc vapor builds up at the interface between the two sheets and this tends to deteriorate the quality of the weld by ejecting weld material from lap position or leaving porosity. Significant effects of primer coated position was lap side rather than surface. Therefore introducing a small gap clearance in the lap position, the zinc vapor could escape through it and sound weld beads can be acquired. In conclusion, formation and suspension mechanism of the welding defects was suggested by controling the factors.

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

키홀 형성을 고려한 레이저 아크 하이브리드 용접 열원 모델링 (Heat source modeling of laser arc hybrid welding considering keyhole formation)

  • 조영태;나석주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.97-99
    • /
    • 2005
  • Laser arc hybrid process is actively researched as a new welding method since it has several advantages by the combination of laser beam and electric arc. By the coupling of two different heat sources, laser and arc mutually assist and influence. High power laser can make the deep keyhole and arc plasma can form the large bead shape. In this paper the effect of two different heat sources to weld bead are investigated and as a result of analysis, it is shown that the lower part of keyhole is heated by laser and the upper part of weld pool is dominantly heated by arc.

  • PDF

GMA 용접공정에서 공정변수 선정을 위한 민감도 분석에 관한 연구 (A Study on Sensitivity Analysis for Selecting the Process Parameters in GMA Welding Processes)

  • 김일수;심지연;김인주;김학형
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.30-35
    • /
    • 2008
  • As the quality of a weld feint is strongly influenced by process parameters during the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. This paper focuses on the development of mathematical models fur the selection of process parameters and the prediction of bead geometry(bead width, bead height and penetration) in robotic GMA(Gas Metal Arc) welding. Factorial design can be employed as a guide for optimization of process parameters. Three factors were incorporated into the factorial model: arc current, welding voltage and welding speed. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.

수정 S-N곡선법을 이용한 용접연결부의 피로수명 추정 (Modified S-N Curve Method to Estimate Fatigue life of Welded Joints)

  • 양박달치;김미경
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.26-32
    • /
    • 2012
  • In this paper, the effects of irregular bead shapes on fatigue life were investigated. A modified S-N curve method was used to estimate the fatigue life, which considered the inherent multiaxiality caused by the geometrical feature produced by the welding process. The point method of the critical distance method was used to determine the fatigue effective stress. Three types of fillet joint models were tested in the fatigue experiments. For each model, real bead shapes were collected using a 3D laser scanner, and finite element analyses were performed. The results of the analyses with actual bead shapes were compared with those using an idealized bead shape model. The results of the present analytical methods showed good agreement with the experimental results.

인공신경망을 이용한 이면비드 예측 및 용접성 평가 (Back-bead Prediction and Weldability Estimation Using An Artificial Neural Network)

  • 이정익;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.79-86
    • /
    • 2007
  • The shape of excessive penetration mainly depends on welding conditions(welding current and welding voltage), and welding process(groove gap and welding speed). These conditions are the major affecting factors to width and height of back bead. In this paper, back-bead prediction and weldability estimation using artificial neural network were investigated. Results are as follows. 1) If groove gap, welding current, welding voltage and welding speed will be previously determined as a welding condition, width and height of back bead can be predicted by artificial neural network system without experimental measurement. 2) From the result applied to three weld quality levels(ISO 5817), both experimented measurement using vision sensor and predicted mean values by artificial neural network showed good agreement. 3) The width and height of back bead are proportional to groove gap, welding current and welding voltage, but welding speed. is not.

노치응력법에 의한 용접 연결부 피로수명 추정에 관한 연구 (Estimation Fatigue Life of Weldments by Notch Stress Approaches)

  • 양박달치;송준규
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.47-51
    • /
    • 2011
  • This paper analyzes the fatigue-life of welded joints using the notch stress approach. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. The actual bead shape is complex and 3-dimensional. It may also greatly influence the fatigue strength. In this study, the welded shape was modeled using a 3D-scanner. The critical distance method was adopted in the evaluation of the fatigue effective notch stress for the weldments. Fatigue life tests were performed to verify the present method of fatigue life estimation for two types of welded plates with longitudinal attachments. The estimated results of the present methods were applied to the results of the experiment. The results of the analysis showed that the scatter of fatigue-life for the experimental data expressed in the nominal stress was significantly reduced by applying the effective fatigue stress of the present study.

자동차 부품의 원격 레이저 용접기술 (Remote Welding of Automobile Components using CO2 Laser and Scanner)

  • 서정;이문용;정병훈;송문종;강희신;김정오
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.74-78
    • /
    • 2008
  • The laser welding of the car body and components has been spread in the automotive industry. The Nd:YAG laser welding system could be used in 3D welding with robot. However, this system cannot efficiently reduce the welding cycle time according to various welding sequences because the robot's moving time is same that of the resistant spot welding system. But the remote welding system with high power $CO_2$ laser and scanner makes it possible welding cycle time much faster than the robot laser welding system. In the $CO_2$ laser remote welding system, laser beam can be rapidly transferred to a workpiece by moving mirrors of scanner system. So, it makes reducing the cycle time of welding process and shaping various welding patterns easily. Therefore, in this paper, the characteristic of weld strength according to patterns of weld bead on $CO_2$ laser welding was investigated. Also, the relationship between shape of weld bead and value of tensile load was studied. Finally, the optimum remote welding condition for car bumper was investigated.

순 티타늄 박판의 파이버 레이저 용접시 결함 억제를 위한 연속의 출력 파형제어 특성(II) - 중첩부 길이변화에 따른 영향 - (The Characteristics of Continuous Waveshape Control for the Suppression of Defects in the Fiber Laser Welding of Pure Titanium Sheet (II) - The Effect According to Control of Overlap Weld Length -)

  • 김종도;김지성
    • Journal of Welding and Joining
    • /
    • 제34권6호
    • /
    • pp.69-74
    • /
    • 2016
  • Because the pure titanium has superior corrosion resistance and formability compared with different material, it is widely used as material of welded heat exchanger. When the welding of heat exchanger is carried out, certain area in which welding start and end are overlapped occurs. The humping of back bead is formed in the overlap area due to partial penetration. Thus in this study, the experiments were carried out by changing the length and wave shape of overlap area, and then the weldabiliay was evaluated through the observation of microstructure, the measurement of hardness and tensile-shear strength test in the overlap area. When overlap length was 9.8mm, humping bead was suppressed. The microstructure of overlap area coarsened and its hardness increased due to remelting. As a result of tensile-shear strength test in the overlap area according to applying the wave shape control, it was confirmed that the overlap area applied wave shape control had more excellent yield strength and ductility.