• Title/Summary/Keyword: Weld joints

Search Result 370, Processing Time 0.024 seconds

Study on tension-tension fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate (수중용접한 국산 SM41A-2강판의 편진반복 인장하중하의 피로강도특성에 관한 연구)

  • 오세규;박주성;한상덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 1987
  • Nowadays, the high development of industrial technique demands the optimal design of marine structures to be welded under the water, because the underwater welding of the ship hull and marine structures can decrease manpower and cost of production. However there is not available at present any report on fatigue behavior about underwater welded joints. In this paper under tention- tension repeated fatigue stress with frequency of 10 cycles per second by local controlled system, the fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate of 10 mm thickness were experimentally examined. The results obtained were as follows : 1) The fatigue strength of underwater welded joints of SM41A-2 was peaked at the heat input of about 1, 400 joule/mm(180 A, 36 V), while, at the heat input of more than about 1, 100 joule/mm (160 A, 33 V) that of the underwater welds at the higher than cycle of life rather than the lower cycle was higher than that of the base metal but lower than that of the atmosphere welds on account of both cooling and notch effects. 2) The fatigue limit of underwater welds increased with an increase of heat input resulting in a peak of that at the heat input of about 1, 400 joule/mm and then decreased gradually. 3) The fatigue strength at N cycles was peaked between the heat input of about 1, 400 and 1, 700 joule/mm where the strain was rapidly increased. 4) It was confirmed that the optimal zone of heat input condition for obtaining the underwater welds fatigue strength higher than that of the base metal exists, and if out of this zone, the fatigue strength of the underwater welds was lower than that of the base metal because of lack weld penetration, inclusion of slag, voids, etc. 5) By the fatigue test, the underwater welds fractured brittly without visual deformation, so the strain was remarkably less than of the atmosphere welds. 6) The fatigue life factor was peaked at the heat input of about 1, 600 joule/mm (200 A, 36 V) at which the mean strain is a little higher than that of the base metal but quite lower than those of the atmosphere welds, resulting in good underwater welds because both fatigue strength and ductility of the underwater welds are higher than those of the base metal at such heat input.

  • PDF

Evaluation of Mechanical Properties of Extruded Magnesium Alloy Joints by Friction Stir Welding : Effect of Welding Tool Geometry (마찰교반용접 툴 변화에 따른 마그네슘 합금 압출 판재 마찰교반용접부 기계적 물성 평가)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lee, Woo-Geun;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.280-288
    • /
    • 2016
  • This study proposes improved welding tools for magnesium alloys. Two types of tools were used for friction stir welding (FSW). The effect of the welding tools on the FSW joints was investigated with a fixed welding speed of 200mm/min and various rotation speeds of 400 to 800 rpm. After FSW, the joints were cross-sectioned perpendicular to the welding direction to investigate the defects. A tensile test and Vickers hardness test were conducted to identity the mechanical properties of the joints. Defects were observed when the rotation speed was 400 rpm, regardless of the welding tool, and the amount of defects tended to decrease with increases in rotational speed. Defect-free welds were obtained when the rotation speed was 800 rpm. The best weld quality was acquired using the C type welding tool. The rotation speed of 800 rpm and welding speed of 200 mm/min produced the best joining properties. The ultimate tensile strength, yield strength, and elongation of the welded region were 90.0%, 69.1%, and 83.2% those of the base metal, respectively.

A Study on Rotary Bending Fatigue Strength of the $CO_2$ Gas Welded Joint in Air and Sea Water ([$CO_2$] 용접이음재의 대기 및 해수중에서의 회전굽힘 피로강도에 관한 연구)

  • S.W. Kang;S.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-126
    • /
    • 2000
  • TMCP steel has been widely used to construct ships and offshore structures. When it comes to ship and offshore structures, corrosion fatigue damages caused by sea water and fatigue occurred by wave-induced forces usually go on occurring simultaneously. So the fatigue life in corrosion environment is decreased markedly in comparison with that in air. The fatigue crack in corrosion easily initiates on welded joints of structure like as the fatigue crack in air. Therefore it is very important to study the fatigue properties of those of their welded joints as well as steel plates. In this study, rotary bending fatigue tests have been performed to investigate fatigue crack initiation and behavior of fatigue crack growth on CO2 gas weld HAZ of TMCP steel. The fatigue test used the specimens with various stress concentration factors in air and 3% NaCl solution

  • PDF

Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints according to Post-Processing in Weld Bead Toes (용접지단부의 후처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Hong, Sung Wook;Kyung, Kab Soo;Choi, Dong-Ho;Yong, Hwan Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.701-713
    • /
    • 2000
  • In this study, the 4-point bending test been performed in order to estimate effect of grinding on fatigue characteristics quantitatively for as-welded specimen, grinding specimen & TIG-dressing specimen for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength at $2{\times}106$cycles of grinding specimen and TIG-dressing specimen has been increased compared with as-welded specimen and satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC. As a result of beachmark test, fatigue cracks on all specimens have occurred at several points where stress

  • PDF

Study on Friction Welding of SUS431 and SCM21 for External Shaft of Ship (선외기 샤프트용 재료의 마찰용접에 관한 연구)

  • 오세규;이종환;배명주;오명석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.38-48
    • /
    • 1993
  • A study on friction welding of stainless steel bar(SUS431) to chrome molybdenum steel bar(SCM21) was accomplished experimentally through analysis for relations among friction welding conditions, tension test, hardness test, microstructure test and acoustic emission test. The results obtained are summarized as follows ; 1. Through friction welding of SUS431 bar to SCM21 bar, the optimum welding condition by considering on strength and toughness was found to be the range of heating time of 3-5 sec when the number of rotating speed of 2000rpm, heating pressure of 10kg/$mm^2$, and upsetting time of 4 sec. 2. Quantitative ralationship was identified between heating time($T_1$, sec) and tensile strength (${\sigma},\;kgf/mm^2$) of the friction welded joint and the relation equation is $\sigma$=52.62$T_1{^{0.06}}$. 3. Through AE test, quantitative relationship was confirmed between heating time($T_1$, sec) and total AE(N, counts) during welding, and the relation is computed as follows ; N=30413.6$e^{0.06T1}$. 4. It was confirmed that the quantitative ralationship exists between the tensile strength of the welded joints and AE cumulative counts. And the relation is computed as the following ; ${\sigma}$=16.37(ln N)- 116.4. 5. When ONZ=36500-41500 counts by $OT_1Z$=3~5sec, it was identified by experiment that the range of welded joint tensile strength is 55.6-57.7kgf/$mm^2$/ whose joint efficiency is more than 100%, and it was experimentally confirmed that the real-time nondestructive quality(strength) evaluation for the friction welded joints could be possible by acoustic emission technique.

  • PDF

Effect of the welding speed on the characteristics of Nd:YAG laser welds for automotive application : 600MPa PH high strength steel (600MPa급 자동차용 석출경화형 고장력강판 Nd:YAG 레이저 용접부의 특성에 미치는 용접속도의 영향)

  • Han, Tae-Kyo;Jung, Byung-Hun;Kang, Chung-Yun
    • Laser Solutions
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2007
  • The effect of welding speed on the weldability, microstructures, hardness, tensile property of Nd:YAG laser welding joint in 600MPa grade precipitation hardening high strength steel was investigated. A shielding gas was not used, and bead-on-plate welding was performed using various welding speeds at a power of 3.5kW. Porosity in the joints occurred at 1.8m/min, but were not observed over the welding speed of 2.1m/min. However, spatter occurred over the welding speed of 6.6m/min. The hardness was the highest at heat affected zone(HAZ) near fusion zone(FZ), and was decreased on approaching to the base metal. The maximum hardness increased with increasing welding speed. The microstructure of FZ was composed of coarse grain boundary ferrite and bainite(upper) but the HAZ near the FZ contained bainite(Lower) and fine ferrite at a low welding speed. With increasing welding speed, ferrite at the FZ and the HAZ became finely and upper binite changed to lower bainite. In a perpendicular tensile test to the weld line, all specimens were fractured at the base metal, and the tensile strength and the yield strength of joints was equal to those of raw material. Elongation was found to be lower than that of the raw material.

  • PDF

Evaluation on Mechanical Properties with Welding Processes for Off Shore Wind Tower Application (TMCP강을 적용한 해상용 풍력타워의 용접 공정에 따른 기계적 물성 평가)

  • Ji, Changwook;Choi, Chul Young;Nam, Dae-Geun;Kim, Hyoung Chan;Jang, Jae Ho;Kim, Ki Hyuk;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2014
  • FCAW(Flux Cored Arc Welding), SAW(Submerged Arc Welding), EGW(Electro Gas Welding), and three-pole SAW are applicable in manufacturing the offshore wind tower. In this paper, mechanical properties of these welded-joints for TMCP steels were evaluated in all above welding processes. The tensile strength of welded-joints for all the welding methods satisfied the standard guideline (KS D 3515). No cracking on weldment was found after the bending test. Changes of weldedments hardness with welding processes were observed. In a weld HAZ (heat-affected zone), a softened HAZ-zone was formed with high heat input welding processes (SAW and EGW). However, the welded-joint fractures were found in the base metal for all cases and small decrease in welded-joint strength was caused by a softened zone. The multi-pole SAW welds exhibited similar mechanical properties comparing to the one with one-pole SAW process.

Recent Trends of Friction Stir Welding of Titanium (타이타늄 소재 마찰교반용접 기술 동향)

  • Chun, Chang-Keun;Kim, Sung-Wook;Kim, Heung-Joo;Chang, Woong-Seong;Noh, Joong-Suk
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.16-20
    • /
    • 2013
  • Titanium and its alloys have been widely using in the various field of industry application due to high corrosion resistant properties and mechanical properties. Titanium is highly reactive in the high temperature state and the formation of titanium oxide and porosities in the nuggets of fusion welding will results in the degradation of the mechanical properties. For this reason the studies of friction stir welding for titanium have been investigated recently. The FSW zones of titanium were classified by the weld nugget (WN), the linear transition boundary (TB) and the heat affected zone (HAZ). The WN along with titanium parent was characterized by the presence of twins and dislocations. The average grain size and hardness of WN has been changed according to heat input. The grain refinement resulted from the FSW increased the hardness in the stir zone. Sound dissimilar joints between SUS 304 and CP-Ti were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700-1100 rpm. Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding, hence the ultimate tensile shear strength of joint reached 100% of Al 1060. Mg alloy and Ti were successfully butt joined by inserting a probe into the Mg alloy plate with slightly offsetting. But Ti-Al intermetallic compound layers formed at the interface of these joints.

Marco and Microscopic Observations of Fatigue Crack Growth Behavior in API 2W Gr. 50 Steel Joints (API 2W Gr. 50 강재 용접부의 피로균열전파거동의 거시적 및 미시적 관찰)

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.73-80
    • /
    • 2012
  • It is well known that a considerable amount of scatter is shown in experimental results relating to fatigue crack growth even under identical and constant amplitude cyclic loading conditions. Moreover, flux cored arc welding (FCAW) is a common method used to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the macro- and microscopic observations of the fatigue crack growth (FCG) behavior of the FCAWed API 2W Gr. 50 steel joints typically applied for offshore structures. In order to clearly understand the randomness of the fatigue crack growth behavior in the materials of three different zones, the weld metal (WM), heat affected zone (HAZ), and base metal (BM), experimental fatigue crack growth tests for each of five specimens were performed on ASTM standard compact tension (CT) specimens under constant amplitude cyclic loading. Special focus was placed on the fatigued fracture surfaces. As a result, a different behavior was observed at the macro-level, depending on the type of material property: BM, HAZ, or WM. The variability in the fatigue crack growth rate for WM was higher than that of BM and HAZ.

The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel (알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향)

  • Kim, Nam-Kyu;Kim, Byung-Chul;Jung, Byung-Hoon;Song, Sang-Woo;Nakata, K.;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.