• Title/Summary/Keyword: Weld joints

Search Result 370, Processing Time 0.024 seconds

Evaluation and Process Analysis of the Superalloy Friction Welding for Large Shaft (초내열합금의 대형마찰용접 공정해석 및 평가)

  • Jeong H. S.;Kim Y. H.;Cho J. R.;Park H. C.;Lee N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.301-304
    • /
    • 2004
  • Friction welding was used to weld the turbine wheel and shaft and have a good welding quality. Friction welding was conducted an the two dissimilar material, Nimonic 80A and SNCrW. The control of friction welding process parameter such as flywheel energy, interface temperature, amount of upset have an effect on the mechanical properties of the welded joint. FE simulation can be a useful tool to optimize the weld geometry and process parameters. Flash shape and thickness weld is consistent with the simulated results. Process analysis was performed by the commercial code DEFORM 2D. Mechanical property of weld joints was evaluated by microstructure, chemical component, tensile, impact, hardness test so on.

  • PDF

Fatigue Tests of Welded Joints and Comparison Study of Foreign Codes (용접부의 피로강도 시험평가 및 해외규격과의 비교연구)

  • Goo, Byeong-Choon;Kim, Jai-Hoon
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.14-23
    • /
    • 2007
  • A lot of fatigue tests on a material, JIS SM490A, with yielding strength of about 350 MPa and tensile strength of about 520 MPa were carried out. Various butt-welded specimens such as reinforcement removed, as-welded and weld toe ground, several types of fillet-welded specimens and full-size box type components were used. After having obtained S-N curves for the above- mentioned specimens, fatigue strengths were compared to those of foreign design codes, AWS, BS 7608 and ENV. It was found the fatigue strengths at low cycles are not in a good agreement with the foreign codes, but the fatigue limits are in a good agreement.

Experimental Study on the Fatigue Behavior of Welded Joints (용접 이음 형상별 피로거동에 관한 실험적 연구)

  • Goo, B.C.;Kim, J.H.;Oh, C.L.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.359-364
    • /
    • 2004
  • We investigated the effect of weld details on fatigue behavior of a material, JIS SM 490 A, with yielding strength of about 350 MPa and tensile strength of about 520 MPa. Tensile tests, instrumented indentation tests and fatigue tests were carried out on double V-grooved butt weld plates such as reinforcement removed, as-welded and weld toe ground. In addition plates with transverse fillet welded web, load carrying cruciform fillet welded plates, non-load-carrying cruciform fillet welded plates and longitudinal butt welded plates were tested. S-N curves for the above specimens were obtained and analyzed

  • PDF

Reliability Improvement Method of Weld Zone in Water Wall Tube for an Ultra Supercritical Coal Fired Boiler (초초임계압 석탄화력 보일러 수냉벽 수관의 용접신뢰성 향상방안)

  • Ahn, Jong-Seok;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.3
    • /
    • pp.53-61
    • /
    • 2010
  • This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process such as preheating and PWHT(post-weld heat treatment) was not conducted strictly. Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

  • PDF

A Study on the Weldability and Mechanical Characteristics of Dissimilar Materials Butt Joints by Laser Assisted Friction Stir Welding (Laser-FSW Hybrid 접합기술을 적용한 이종재료(Al6061-T6/SS400) 접합부의 접합성 및 기계적 특성에 관한 연구)

  • Bang, Han-Sur;Bang, Hee-Seon;Kim, Hyun-Su;Kim, Jun-Hyung;Oh, Ik-Hyun;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.70-75
    • /
    • 2010
  • This study intends to investigate the weldability and mechanical characteristics of butt weld joints by LAFSW for dissimilar materials (Al6061-T6 and SS400). At optimum welding conditions, the tensile strength of dissimilar materials joints made by FSW is found to be lower than that of LAFSW. Due to the increase in plastic flow and formation of finer recrystallized grains at the TMAZ and SZ by laser preheating in LAFSW, the hardness in LAFSW appeared to be higher than that of FSW. Compared with FSW, finer grain size is observed and elongated grains in parent metal are deformed in the same direction around the nugget zone in TMAZ of Al6061-T6 by LAFSW. Whereas, at weld nugget zone, coarse grain size is appeared in LAFSW compared to FSW, which is owing to more plastic flow due to laser preheating effect. In dissimilar materials joints by LAFSW, ductile mode of fracture is found to occur at Al6061 side with fewer brittle particles. Mixed mode of cleavage area and ductile fracture is observed at SS400 side.

Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading (저사이클피로 하중하의 Alloy 617 모재와 용접부재에 대한 피로 수명 평가)

  • Dewa, Rando Tungga;Kim, Seon-Jin;Kim, Woo-Gon;Kim, Min-Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.122-128
    • /
    • 2014
  • Generally, the mechanical components and structures are joined by many welding techniques, and therefore the welded joints are inevitable in the construction of structures. The Alloy 617 was initially developed for high temperature applications above $800^{\circ}C$. It is often considered for use in aircraft and gas turbines, chemical manufacturing components, and power generation structures. Especially, the Alloy 617 is the primary candidate for construction of intermediate heat exchanger (IHX) on a very high temperature reactor (VHTR) system. In the present paper, the low cycle fatigue (LCF) life of Alloy 617 base metal (BM) and the gas tungsten arc welded (GTAWed) weld joints (WJ) are evaluated by using the previous experimental results under strain controlled LCF tests. The LCF tests have been performed at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The LCF lives for the BM and WJ have been evaluated from the Coffin-Manson and strain energy based life methods. For both the BM and WJ, the LCF lives predicted by both Coffin-Manson and strain energy based life methods was found to well coincide with the experimental data.

Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint (십자형 필릿 용접부에서의 피로파괴 형상과 특성)

  • Lee, Yong-Bok;Chung, Joon-Ki;Park, Sang-Heup
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.

FATIGUE DESIGN FORSUS30IL SPOT-WELDED MULTI-LAP JOINTS SUBJECTED TO TENSILE SHEAR LOAD

  • Na, T.H.m;Jung, W.S.;Bae, D.H;I.S.Shon
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.121-126
    • /
    • 2002
  • The railroad cars or the commercial vehicles are generally manufactured by the spot welding. Among various kinds of spot welded lap joints, multi-lap joints are one of popular joints in manufacturing their body structures. But, fatigue strength of these joints are lower than that of base metal due to high stress concentration at the nugget edge of the spot weld and are known to considerably be influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic fatigue design criterion for spot welded multi-lap joints. In this paper, the $\Delta$P-N$_{f}$ curves has been rearranged in the $\Delta$$\sigma$-N$_{f}$ relation with the maximum stress at the nugget edge of spot welded multi-lap joints subjected to tensile shear load. Consequently, the fatigue data were evaluated in terms of fracture mechanics by plotting on the $\Delta$OP-N$_{f}$ curves. From the results obtained, both of them have been revealed to be applicable to fatigue design of spot welded multi-lap joints. However, the fracture mechanical approach is found to be more effective than the maximum stress approach in the range on N$_{f}$$\geq$2x10$^{5}$ . .

  • PDF

A Study on The Strength Evaluation of welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-710
    • /
    • 2002
  • Welding is used not only during the shipbuilding, but also during the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, The result within identical materials showed that the heat-affected zone was slower than that of parent metal

  • PDF

A Study on the Strength Evaluation of Welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용;임명환;김태식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.75-82
    • /
    • 2002
  • Welding is used not only for the shipbuilding, but also for the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, the result from identical materials showed that the rate of fatigue crack growth of the heat-affected zone was slower than that of parent metal.