Area average rainfall estimation is important to determine the exact amount of the available water resources and the essential input data for rainfall-runoff analysis. Like that, the necessary criterion for accurate area average rainfall estimate is the uniform spatial distribution of raingauge network. In this study, we suggest the spatial distribution evaluation methodology of raingauge network to estimate better area average rainfall and after the suggested method is applied to Han River and Geum River basin. The spatial distribution of rainfall network can be quantified by the nearest neighbor index. In order to evaluate the effects of the spatial distribution of rainfall network by each basin, area average rainfall was estimated by arithmetic mean method, the Thiessen's weighting method and estimation theory for 2013's rainfall event, and evaluated the involved errors by each cases. As a result, it can be found that the estimation error at the best basin of spatial distribution was lower than the worst basin of spatial distribution.
Purpose This study suggests the development of forecasting model for local cable TV advertisement. In order to verify the expected effect of the suggestion, using the causal loop map of System Dynamics, the factors affecting the prospects of cable TV commercial market were divided into 5 groups. Then targeting 97 people involved in the cable TV commercial market in Busan, Ulsan, and Gyeongnam, a survey was conducted on their perception of the current status of local advertisement market and future prospect. Design/methodology/approach The analysis of the collected data shows that workers in advertising and advertisers perceive the influence of cable TV as an advertising media to be high, while clearly understanding the problems of cable TV commercial market. Based on this the effects on the prospects of cable TV commercial market were analyzed and a forecasting method called Weighted Moving Average was applied. In order to improve accuracy of the added value of Weighted Moving Average, the 5 factors were divided into qualitative factors and quantitative factors, and using Multi-attribute Decision Making method, all the factors were normalized and weighting factors were deduced. The result of simulating the prospects of cable TV commercial market using Weighted Moving Average, both qualitative and quantitative factors showed downward turn in the market prospect for the following 10 years. Findings The result reflects generally negative perception of advertisement viewers about the prospects of cable TV commercial market. Compared to the previous studies on domestic cable TV commercials that focused on policy suggestions and surveys on perception of current status, this study has its significance in that it used scientific method and simulation for verification.
In this paper, we consider a cognitive radio system operating as secondary user. It uses an empty channel that is not currently used by primary users having the license to the channel. In the previous works, secondary user looks for an empty channel by choosing any channel in order or randomly and by sensing the channel to distinguish whether primary users are using. But if primary user is fixed type, we will find an empty channel faster than the mentioned channel selecting methods by using a method considering prior information about cases that primary user used the channel, since it is possible to analogize the channel access possibility of primary user according to regular time and position. Therefore, we propose a channel searching method based on the channel list for the purpose of reducing the channel searching time and improving throughput of secondary users. Firstly, we determine a weighting value of each channel based on the history of channel activities of primary users. This value is added to current channel state buffer and we search an empty channel from channel with smallest value to one with the biggest value. Finally, we compare the performances of the proposed method with those of the sequential channel searching and the random channel searching methods in terms of the average channel searching time and the average number of transmissions of secondary user.
In causal analysis of high dimensional data, it is important to reduce the dimension of covariates and transform them appropriately to control confounders that affect treatment and potential outcomes. The augmented inverse probability weighting (AIPW) method is mainly used for estimation of average treatment effect (ATE). AIPW estimator can be obtained by using estimated propensity score and outcome model. ATE estimator can be inconsistent or have large asymptotic variance when using estimated propensity score and outcome model obtained by parametric methods that includes all covariates, especially for high dimensional data. For this reason, an ATE estimation using an appropriate dimension reduction method and semiparametric model for high dimensional data is attracting attention. Semiparametric method or sparse sufficient dimensionality reduction method can be uesd for dimension reduction for the estimation of propensity score and outcome model. Recently, another method has been proposed that does not use propensity score and outcome regression. After reducing dimension of covariates, ATE estimation can be performed using matching. Among the studies on ATE estimation methods for high dimensional data, four recently proposed studies will be introduced, and how to interpret the estimated ATE will be discussed.
The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there are $N=\{1,2,{\cdots},n\}$ which is a set of item indices and $L=\{s1,s2,{\cdots},sn\}$ be a set of item sizes sj, where $0<sj{\leq}1$, ${\forall}j{\in}N$. The objective is to minimize the number of bins used for packing items in N into a bin such that the total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9. Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the FFD solution. The occupied space is later called the weighting function. The objective is to determine the maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the asymptotic worst-case ratio.
We developed fog detection algorithm (KNU_FDA) based on the optical and textural properties of fog using satellite (COMS) and ground observation data. The optical properties are dual channel difference (DCD: BT3.7 - BT11) and albedo, and the textural properties are normalized local standard deviation of IR1 and visible channels. Temperature difference between air temperature and BT11 is applied to discriminate the fog from other clouds. Fog detection is performed according to the solar zenith angle of pixel because of the different availability of satellite data: day, night and dawn/dusk. Post-processing is also performed to increase the probability of detection (POD), in particular, at the edge of main fog area. The fog probability is calculated by the weighted sum of threshold tests. The initial threshold and weighting values are optimized using sensitivity tests for the varying threshold values using receiver operating characteristic analysis. The validation results with ground visibility data for the validation cases showed that the performance of KNU_FDA show relatively consistent detection skills but it clearly depends on the fog types and time of day. The average POD and FAR (False Alarm Ratio) for the training and validation cases are ranged from 0.76 to 0.90 and from 0.41 to 0.63, respectively. In general, the performance is relatively good for the fog without high cloud and strong fog but that is significantly decreased for the weak fog. In order to improve the detection skills and stability, optimization of threshold and weighting values are needed through the various training cases.
Various methods have been so far proposed to find out the directions and spectra of sound waves from the sources for provisions of noise controls. The conventional methods are generally classified into three systems such as, single microphone system, moving microphone system and multi-microphone system, which composes a resultant super directivity by giving a appropriate delay and a weighting coefficient in the output of each microphone. In case of using a single microphone there is a difficulty in providing it with desirable super directivity in the low frequency range, while in case of using multi-microphone system there has been a disadvantage that the measurement of directivity could not separately be done with the spectrum analysing. And in case of the use of a moving microphone system it needs a condition that the sound source to be detected should be stationary state and in rest. However here we introduce a method that the spectral analysing and the directivity of synthesis can be separately carried out by using a linear array of many microphones, in which each output of the microphone is multiplied by appropriate weighting coefficient and all of those products are summed after passing through adequate filters. The resultant signal is then sampled with an adequate sampling frequency and taken average for processing.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.18
no.10
/
pp.1172-1180
/
2007
OFDM system has very good high spectral efficiency and the robustness to the frequency-selective fading. Because of the high PAPR, OFDM signals can be distorted in nonlinear HPA(High Power Amplifier). So, to overcome the nonlinear distortion, it is very important to reduce the IMD value. With respect to the BER performance, IMD reduction method is better than the PAPR reduction method. However, IMD reduction method has much more system complexity because of the additional FFT processor in transmitter. In this paper, we study the OFDM communication system based on the IMD reduction method using SPW method. A new IMD reduction method is proposed to reduce the computational complexity. SPW method is to divide the input OFDM data into several sub-blocks and to multiply phase weighting values with each sub-blocks for the reduction of PAPR or IMD. Unlike the conventional method, the system size and computational complexity can be reduced.
The Journal of Korean Institute of Next Generation Computing
/
v.15
no.5
/
pp.53-63
/
2019
To provide a hand gesture interface through deep learning in mobile environments, research on the light-weighting of networks is essential for high recognition rates while at the same time preventing degradation of execution speed. This paper proposes a method of real-time recognition of written characters in the air using a finger on mobile devices through the light-weighting of deep-learning model. Based on the SSD (Single Shot Detector), which is an object detection model that utilizes MobileNet as a feature extractor, it detects index finger and generates a result text image by following fingertip path. Then, the image is sent to the server to recognize the characters based on the learned OCR model. To verify our method, 12 users tested 1,000 words using a GALAXY S10+ and recognized their finger with an average accuracy of 88.6%, indicating that recognized text was printed within 124 ms and could be used in real-time. Results of this research can be used to send simple text messages, memos, and air signatures using a finger in mobile environments.
Proceedings of the Korean Information Science Society Conference
/
2005.11a
/
pp.502-504
/
2005
TFRC는 전송률 산출을 위해 Loss Rate와 RTT정보를 TCP-equation에 적용한다. 그러나 무선망과 같이 지연 변화가 큰 환경의 경우 RTT 값이 정확한 망상황을 표현한다고 할 수 없다. 모바일 단말의 경우 움직임에 따라 지연정보는 계속 변화하게 되며 순방향, 역방향 지연정보간의 차이도 발생하게 된다. 본 논문에서는 지연 변화가 큰 환경에 맞는 지연정보인 One-way Delay를 사용하여 TFRC의 전송률 예측방법을 개선한다. One-way Delay 정보를 이용하여 Average Weighting을 거쳐 TCP-equation에 적용하여 전송률을 산출함으로써 정확한 Bandwidth의 예측이 가능함을 시뮬레이션을 통해 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.