본 연구에서는 다속성 의사결정(MADM)과 게임 이론을 결합하여 무선 자원의 이용효율을 향상시키는 호 수락제어 방법을 제시한다. 다속성 의사결정 방법으로 그레이 관계분석(GRA), 단순부가가중치법(SAW), TOPSIS들을 이용하였는데, 이 방법들은 서로 다른 서비스 품질(QoS)을 갖는 서비스들이 선호하는 대상 네트워크들의 선호도를 계산할 것이다. 이 선호도 값들을 이용한 효용함수를 바탕으로, 사용자가 요구하는 서비스 중에서 서비스 제공자들에게 적합한 서비스를 선택할 수 있도록 비협력적 게임이 진행된다. 요청되는 모든 서비스가 선택될 때까지 게임은 반복적으로 진행되며, 각 단계에서 내쉬균형을 이루는 서비스가 선택되도록 하였다. 서로 다른 특성을 갖는 4개의 무선 랜(WLAN) 시스템 중에서 임의의 2개의 네트워크가 중첩하여 존재하는 경우들을 각각 분석한 결과, 모든 다속성 의사결정 방법들은 서비스 제공자가 얻는 최대 보수의 차이는 있었으나 게임의 각 단계에서 동일한 서비스 선택하는 결과를 얻을 수 있었다.
독립형 무선 인지 시스템은 보통 채널에 대한 면허를 가지는 기사용자가 사용하지 않는 빈 채널을 사용하는 2차 사용자로서 동작한다. 기존연구에서는 이와 같은 2차 사용자가 가용한 채널을 찾을 때, 순차 혹은 무작위로 채널을 선택하여 기사용자의 사용 유무를 확인하였다. 하지만 이러한 방법은 무선 채널의 특성에 맞지 않다. 그러므로 본 논문에서는 이전에 채널을 기사용자가 사용한 경우를 고려하여 가중치 값을 결정하고, 각 채널별 상태 값 중에서 작은 순서대로 채널을 선택함으로써 빈 채널을 찾는데 소요되는 시간을 줄이는 방법을 제안하고, 2차 사용자의 평균 채널 찾기 시간과 평균 전송 횟수의 관점에서 순차적, 무작위적 방법과 그 성능을 비교 분석 한다.
사례기반추론(case-based reasoning)은 사례간 유사도를 평가하여 유사한 이웃사례를 찾아내고, 이웃사례의 결과를 이용하여 새로운 사례에 대한 예측결과를 생성하는 전통적인 인공지능기법 중 하나다. 이러한 사례기반추론이 최근 적용이 쉽고 간단하다는 장점과 모형의 갱신이 실시간으로 이루어진다는 점 등으로 인해, 온라인 환경에서의 고객관계관리를 위한 도구로 학계와 실무에서 주목을 받고 있다 하지만, 전통적인 사례기반추론의 경우, 타 인공지능기법에 비해 정확도가 상대적으로 크게 떨어진다는 점이 종종 문제점으로 제기되어 왔다. 이에, 본 연구에서는 사례기반추론의 성과를 획기적으로 개선하기 위한 방법으로 유전자 알고리즘을 활용한 사례기반추론의 동시 최적화 모형을 제안하고자 한다. 본 연구가 제안하는 모형에서는 기존 연구에서 사례기반추론의 성과에 중대한 영향을 미치는 요소들로 제시된 바 있는 사례 특징변수의 상대적 가중치 선정(feature weighting)과 참조사례 선정(instance selection)을 유전자 알고리즘을 이용해 최적화함으로서, 사례간 유사도를 보다 정밀하게 도출하는 동시에 추론의 결과를 왜곡할 수 있는 오류사례의 영향을 최소화하고자 하였다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 국내 한 전문 인터넷 쇼핑몰의 구매예측모형 구축사례에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안모형이 지금까지 기존 연구에서 제안된 다른 사례기반추론 개선모형들은 물론, 로지스틱 회귀분석(LOGIT), 다중판별분석(MDA), 인공신경망(ANN), SVM 등 다른 인공지능 기법들에 비해서도 상대적으로 우수한 성과를 도출할 수 있음을 확인할 수 있었다.
현대 기업에 있어서 기업 내외부에 발생하는 상호작용에 대한 객관적이며 계량화된 성과측정 방법론에 중요성이 강조되고 있다. 이러한 현상의 원인은 기업에 대한 객관적인 평가를 통한 기업의 현재가치와 현재의 에너지 상태를 가늠하여 미래 지향적인 전략의 수립과 실천의 중요성이 있기 때문이다. 이에 따라 최근 들어 부각되고 있는 객관적 성과측정 방법론인 BSC(Balance Scorecard)를 사용한 성과지표로써의 KPI 선정이 매우 중요시되고 있다. 기존 KPI에 대한 많은 연구들이 여러 산업 군에서 이루어져 있지만, SI 기업에 대한 KPI 연구는 미비한 실정이었다. 본 연구에서는 SI 기업에 적용될 수 있는 KPI를 발굴하는데 초점을 맞추고 있다. SI 기업들의 일반적인 전략에 따른 KPI 설계체계에 대한 연구와 조직군별 평가지표 개발에 따른 방법론과 평가지표개발에 대한 연구를 진행 하였으며, 아울러 각각의 평가지표에 따른 가중치 적용 방법론을 제시하였다.
전지구적 기온상승으로 인해 미래기후의 관한 연구가 중요시 되고 있다. 위와 같은 현상으로 인하여 다양한 기후변화 연구가 진행되고 있다. 미래기후 연구에는 GCM (General Circulation Model) 모의 결과가 이용된다. 격자 자료로 구성된 GCM은 연구 지점으로 지역적 상세화와 연구지역의 관측자료 사이의 편이 보정(bias correction)이 필수적이다. 위와 같은 근거로 편이 보정 방법의 선택은 매우 중요하며 편의 보정의 방법에 따라서 결과가 다르게 도출될 수 있다. 또한 국내외 연구에서는 다양한 상세화 기법과 편이 보정 기법을 분석 및 평가하는 연구가 진행되고 있으며, 편의 기법 중 대표적인 기법인 Quantile mapping과 Random Forest 기법이 있다. Quantile mapping 기법은 GCM의 과거 모의 데이터와의 편이 보정에 있어서 우수하게 나타났으나, GCM 데이터의 미래 예측 기간(2010년~2018년)까지의 데이터에서는 극한 강수를 정량적으로 분석 가능한 Random Forest 기법이 편이 보정 과정에서 성능이 우수할 것으로 판단된다. 본 연구에서는 우리나라 21개 관측소를 기준으로 총 4개의 GCM(GISS, CSIRO, CCSM4,MIROC5)의 과거 기간 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량을 편의 보정하는 방법에 있어서 편의 보정 기법의 성능을 비교한 결과와 GCM 미래 예측 기간 자료(2010년~2018년)에서의 편의 보정 기법의 성능 결과를 비교하였다. 이를 토대로 편이 보정 기법의 결과를 6개의 평가지수를 이용하여 정량적으로 분석하였으며, 다기준의사결정기법인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)를 이용하여 편이 보정기법들의 성능에 있어서 우선순위를 선정하였다. 본 연구에서 편이 보정 방법으로 Quantile mapping 방법을 사용했으며, Quantile mapping의 기법으로는 비모수 변환법(non-parametric transformation)과 분포기반 변환법(distribution derived transformation)이 사용되었다. 또한 머신러닝 방법 중 하나인 Random Forest 방법을 동시에 사용하여 결과를 비교하였다. 또한 GCM 자료가 격자식으로 제공하고 있기 때문에 관측소 강수량도 공간적으로 환산하여야 하는데, 본 연구에서는 역거리 가중치법(inverse distance weighting, IDW) 방법을 이용하였다.
The three-dimensional failure criterion is essential for maintaining wellbore stability and sand production problem. The convenient factor for a stable wellbore is mud weight and borehole orientation, i.e., mud window design and selection of borehole trajectory. This study proposes a new three-dimensional failure criterion with linear relation of three in-situ principal stresses. The number of failure criteria executed to understand the phenomenon of rock failure under in-situ stresses is the Mohr-Coulomb criterion, Hoek-Brown criterion, Mogi-Coulomb criterion, and many more. A new failure criterion is the extended Mohr-Coulomb failure criterion with the influence of intermediate principal stress (σ2). The influence of intermediate principal stress is considered as a weighting of (σ2) on the mean effective stress. The triaxial compression test data for eleven rock types are taken from the literature for calibration of material constant and validation of failure prediction. The predictions on rock samples using new criteria are the best fit with the triaxial compression test data points. Here, Drucker-Prager and the Mogi-Coulomb criterion are also implemented to predict the failure for eleven different rock types. It has been observed that the Drucker-Prager criterion gave over prediction of rock failure. On the contrary, the Mogi-Coulomb criterion gave an equally good prediction of rock failure as our proposed new 3D failure criterion. Based on the yield surface of a new 3D linear criterion it gave the safest prediction for the failure of the rock. A new linear failure criterion is recommended for the unique solution as a linear relation of the principal stresses rather than the dual solution by the Mogi-Coulomb criterion.
Hong Ju Shin;Wan Kee Kim;Jin Kyoung Kim;Joon Bum Kim;Sung-Ho Jung;Suk Jung Choo;Cheol Hyun Chung;Jae Won Lee
Korean Circulation Journal
/
제52권2호
/
pp.136-146
/
2022
Background and Objectives: There still are controversies on which type between bovine pericardial and porcine valves is superior in the setting of aortic valve replacement (AVR). This study aims to compare clinical outcomes of AVR using between pericardial or porcine valves. Methods: The study involved consecutive 636 patients underwent isolated AVR using stented bioprosthetic valves between January 2000 and May 2016. Of these, pericardial and porcine valves were implanted in 410 (pericardial group) and 226 patients (porcine group), respectively. Clinical outcomes including survival, structural valve deterioration (SVD) and trans-valvular pressure gradient were compared between the groups. To adjust for potential selection bias, inverse probability treatment weighting (IPTW) was conducted. Results: The mean follow-up duration was 60.1±50.2 months. There were no significant differences in the rates of early mortality (3.1% vs. 3.1%; p=0.81) and SVD (0.3%/patient-year [PY] vs. 0.5%/PY; p=0.33) between groups. After adjustment using IPTW, however, landmark mortality analyses showed a significantly lower late (>8 years) mortality risk in pericardial group over porcine group (hazard ratio [HR], 0.61; 95% confidence interval, [CI] 0.41-0.90; p=0.01) while the risks of SVD were not significantly difference between groups (HR, 0.45; 95% CI, 0.12-1.70; p=0.24). Mean pressure gradient across prosthetic AV was lower in the Pericardial group than the Porcine group at both immediate postoperative point and latest follow-up (p values <0.001). Conclusions: In patients undergoing bioprosthetic surgical AVR, bovine pericardial valves showed superior results in terms of postoperative hemodynamic profiles and late survival rates over porcine valves.
연구목적 신체 증상 장애(Somatic Symptom Disorder, SSD)는 다양한 신체 증상의 발현을 특징으로 하며, 현재까지 환자군 내에서 증상 심각도에 따른 자율신경계 활성의 차이에 대해서는 연구된 바가 거의 없다. 이에 본 연구에서는 신체 증상 장애 환자군에서 심박변이도(Heart Rate Variability, HRV) 차이를 검정하여 증상 심각도에 따른 자율신경계 변화를 반영하는 대표적 지표를 분석하였다. 방 법 2020년 9월 18일부터 2021년 10월 29일까지 강남세브란스병원 정신건강의학과에 내원했던 환자 중, DSM-5 진단 기준에 따라 SSD로 진단받은 환자 총 51명의 의무기록을 후향적으로 수집하였다. 이후, 집단 간 인구사회학 및 임상적 선택편의 보정을 위해 역확률 가중치(Inverse Probability Treatment Weighting, IPTW)를 적용하여 HRV 지표 차이 검정을 실시하였다. 결 과 신체 증상 심각도와 LF (nu), HF (nu), LF/HF, 그리고 SD1/SD2, Alpha1/Alpha2는 통계적으로 유의한 상관관계를 보였으며, IPTW 적용 후 비중증군은 27명(53.0%), 중증군은 24명(47.0%)로 보정되었고, 인구사회학적 요인 및 임상적 특성 차이가 유의미하지 않아 동질성이 확보되었다. 본 모형 분석 결과 고위험군일수록 시간 영역의 RMSSD (β=-0.70, p=0.003), pNN20 (β=-1.04, p=0.019), 주파수 영역은 LF (nu) (β=0.29, p<0.001), HF (nu) (β=-0.29, p<0.001), LF/HF (β=1.41, p=0.001), 그리고 비선형 영역에서는 SampEn15 (β=-0.35, p=0.014), SD1/SD2 (β=-0.68, p<0.001), Alpha1/Alpha2 (β=0.43, p=0.001)에서 유의미한 차이가 검정되었다. 결 론 신체 증상 심각도에 따른 HRV 지표의 차이는 시간과 주파수 영역, 그리고 비선형 영역 전반에서 검정되었으며, 신체 증상이 심할수록 교감신경의 과활성화 및 부교감신경의 저하를 시사하는 HRV 지표들이 유의미하게 높은 경향성을 보였다.
본 논문에서는 컨볼루션 신경망 구조(Convolution Neural Network)에서 정규화 및 교차검증 횟수 감소를 위한 무작위로 풀링 연산을 선택하는 방법에 대해 설명한다. 컨볼루션 신경망 구조에서 풀링 연산은 피쳐맵(Feature Map) 크기 감소 및 이동 불변(Shift Invariant)을 위해 사용된다. 기존의 풀링 방법은 각 풀링 계층에서 하나의 풀링 연산이 적용된다. 이러한 방법은 학습 간 신경망 구조의 변화가 없기 때문에, 학습 자료에 과도하게 맞추는 과 적합(Overfitting) 문제를 가지고 있다. 또한 최적의 풀링 연산 조합을 찾기 위해서는, 각 풀링 연산 조합에 대해 교차검증을 하여 최고의 성능을 내는 조합을 찾아야 한다. 이러한 문제를 해결하기 위해, 풀링 계층에 확률적인 개념을 도입한 무작위 풀링 연산 선택 방법을 제안한다. 제안한 방법은 풀링 계층에 하나의 풀링 연산을 적용하지 않는다. 학습기간 동안 각 풀링 영역에서 여러 풀링 연산 중 하나를 무작위로 선택한다. 그리고 시험 시에는 각 풀링 영역에서 사용된 풀링 연산의 평균을 적용한다. 이러한 방법은 풀링 영역에서 서로 다른 풀링 조합을 사용한 구조의 평균을 한 것으로 볼 수 있다. 따라서, 컨볼루션 신경망 구조가 학습데이터에 과도하게 맞추어지는 과적합 문제를 피할 수 있으며, 또한 각 풀링 계층에서 특정 풀링 연산을 선택할 필요가 없기 때문에 교차 검증 횟수를 감소시킬 수 있다. 실험을 통해, 제안한 방법은 정규화 성능을 향상시킬 뿐만 아니라 및 교차 검증 횟수를 줄일 수 있다는 것을 검증하였다.
표본조사에서 가중치는 설계 단계와 분석 단계에서 만들어지고 부여될 수 있다. 설계 단계의 가중치는 추출확률이나 응답률 등과 같은 표본 데이터 획득 지표에 관련되어 있고 분석 단계의 가중치는 모집단 수치나 다른 보조 변수정보 등과 같은 외적인 정보와 관련되어 있다. 그리고 최종가중치는 설계 단계의 가중치와 분석 단계의 가중치의 곱으로 만들어진다. 이 논문에서는 분석 단계에서 부여되는 가중치에 초점을 맞추어 가중평균으로 모평균을 추정할 때 가중평균에 포함된 가중치가 모평균 추론에 미치는 영향을 고찰하였다. 유한모집단에서 각 조사단위에 조사변수와 가중치가 쌍으로 있고 표본추출확률이 균등한 경우를 가정하였다. 이러한 조건에서 가중평균의 편향과 평균제곱오차를 구하여 가중평균은 모평균의 편향 추정량임을 보였고, 편향의 방향과 크기는 조사변수와 가중치의 상관관계로 설명할 수 있음을 보였다. 즉, 만일 가중치와 조사변수가 양의 상관관계가 있으면 가중평균은 모평균을 과대 추정하게 되고, 만일 음의 상관관계가 있으면 모평균을 과소 추정하게 된다. 그리고 두 변수의 상관계수가 크면 편향은 증가한다. 가중평균에 대한 이론적인 수식 유도와 함께 편향의 크기와 평균제곱오차의 크기를 수치적으로 검토하기 위하여 모의실험을 실시하였다. 모의실험에서는 상관계수가 -0.2과 0.6사이에 있는 9개의 가중치를 생성하였고, 표본수는 100부터 400까지 고려하여 편향의 크기와 평균제곱오차의 크기를 수치적으로 구하였다. 하나의 결과로써 상관계수가 0.55이고 표본수가 400인 경우에 가중평균의 편향의 제곱이 평균제곱오차에서 차지하는 비율은 무려 82%에 이르는 것으로 나타났는데, 이는 가중평균의 편향이 어떤 경우에는 매우 심각할 수도 있음을 보여주는 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.