• Title/Summary/Keyword: Weighting Functions

Search Result 181, Processing Time 0.034 seconds

Improved Excitation Modeling for Low-Rate CELP Speech Coding

  • Kwon, Chul-Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.24-30
    • /
    • 1999
  • In this paper, we propose a weighting dependent mixed source model (WD-MSM) coder that is an improved version of a CELP-based mixed source model (C-MSM) coder. The coder classifies speech segments into three types : voiced, unvoiced and mixed. The excitation for a voiced frame is an adaptive source, and the excitation for an unvoiced frame is a stochastic source. The coder has a modified mixed source for a mixed frame. We apply different weighting functions for three classes. Simulation results show that the proposed coder at 4 kbits/s yields very good performance both subjectively and objectively.

  • PDF

Development of Frequency Weighting Shape for Evaluation of Discomfort due to Vertical Whole-body Shock Vibration (수직방향 전신 충격진동의 불편함 평가를 위한 주파수가중곡선 개발)

  • Ahn, Se-Jin;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.658-664
    • /
    • 2006
  • Shock vibrations are usually experienced in vehicles excited by impulsive input, such as bumps. The frequency weighting functions of the current standards in ISO 2631 and BS 6841 are to help objectively predict the amount of discomfort of stationary vibration. This experimental study was designed to develop frequency weighting shape for shock vibration having various fundamental frequencies from 0.5 to 16Hz. The specks were produced from the response of single. degree-of-freedom model to a half-sine force input. Fifteen subjects used the magnitude estimation method to judge the discomfort of vertical shock vibration generated on the rigid seat mounted on the simulator. The magnitudes of the shocks, expressed in terms of both peak-to-peak value and un-weighted vibration dose values (VDVs) , were correlated with magnitude estimates of the discomfort. The frequency weighting shapes from the correlation were developed and investigated having nonlinearity due to the magnitude of the shock.

Analysis of robust performance improvement using loop shaping and structured singular value (루프쉐이핑과 구조적 특이치를 이용한 견실성능 개선)

  • 방경호;오도창;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.17-24
    • /
    • 1996
  • In this paper, we present a robust performance improvement method for the NLCF(normalized left coprime factor) uncertain structure using loop shaping and the structure singular value. For this, we select weighting functions for a loop shaping considering condition numer, and transform the NLCF uncertain structure into the 4-block structure. However, we can't get a good performance on account of the restriction of weighting functions. To cope with this, we motivate the use of structured singular vlaue in the robust performance improvement procedure. After all, the robust performance improvement can be obtained by a factor W$_{a}$ and a scaling factor of D-K iteration.

  • PDF

Fuzzy-Neural Networks by Means of Division of Fuzzy Input Space with Multi-input Variables (다변수 퍼지 입력 공간 분할에 의한 퍼지-뉴럴 네트워크)

  • Park, Ho-Sung;Yoon, Ki-Chan;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.824-826
    • /
    • 1999
  • In this paper, we design an Fuzzy-Neural Networks(FNN) by means of divisions of fuzzy input space with multi-input variables. Fuzzy input space of Yamakawa's FNN is divided by each separated input variable, but that of the proposed FNN is divided by mutually combined input variables. The membership functions of the proposed FNN use both triangular and gaussian membership types. The parameters such as apexes of membership functions, learning rates, momentum coefficients, weighting value, and slope are adjusted using genetic algorithms. Also, an aggregate objective function(performance index) with weighting value is utilized to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the data of sewage treatment process.

  • PDF

EXTENSION OF AUSMPW+ SCHEME FOR TWO-FLUID MODEL

  • Park, Jin Seok;Kim, Chongam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.209-219
    • /
    • 2013
  • The present paper deals with the extension of AUSMPW+ scheme into two-fluid model for multiphase flow. AUSMPW+ scheme is the improvement of a single-phase AUSM+ scheme by designing pressure-based weighting functions to prevent oscillations near a wall and shock instability after a strong shock. Recently, Kitamura and Liou assessed a family of AUSM-type schemes with two-fluid model governing equations [K. Kitamura and M.-S. Liou, Comparative study of AUSM-Family schemes in compressible multi-phase flow simulations, ICCFD7-3702 (2012)]. It was observed that the direct application of the single-phase AUSMPW+ did not provide satisfactory results for most of numerical test cases, which motivates the current study. It turns out that, by designing pressure-based weighting functions, which play a key role in controlling numerical diffusion for two-fluid model, problems reported in can be overcome. Various numerical experiments validate the proposed modification of AUSMPW+ scheme is accurate and robust to solve multiphase flow within the framework of two-fluid model.

Application of H$$_\infty$$Robust Control Theory to Poorer System Stabilizer and Its Experiment (H$$_\infty$$강인 제어 이론의 전력계통 안정화 장치 (PSS)에 의 적용)

  • 전영환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • This paper presents a novel application method of H$_{\infty}$ optimization method to the design of Power System Stabilizer(PSS) and experimental results through hardware simulator. The approach is focused on decision of performance index and selection strategy of weighting functions together with its tuning for direct design. As the Purpose of the PSS is to increase system damping at very narrow frequency band, weighting functions are determined differently from the case of general servo system control. The designed PSS was confirmed through experiments on a hardware simulator.

The μ-synthesis and analysis of water level control in steam generators

  • Salehi, Ahmad;Kazemi, Mohammad Hosein;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.163-169
    • /
    • 2019
  • The robust controller synthesis and analysis of the water level process in the U-tube system generator (UTSG) is addressed in this paper. The parameter uncertainties of the steam generator (SG) are modeled as multiplicative perturbations which are normalized by designing suitable weighting functions. The relative errors of the nominal SG model with respect to the other operating power level models are employed to specify the weighting functions for normalizing the plant uncertainties. Then, a robust controller is designed based on ${\mu}$-synthesis and D-K iteration, and its stability robustness is verified over the whole range of power operations. A gain-scheduled controller with $H_{\infty}$-synthesis is also designed to compare its robustness with the proposed controller. The stability analysis is accomplished and compared with the previous QFT design. The ${\mu}$-analysis of the system shows that the proposed controller has a favorable stability robustness for the whole range of operating power conditions. The proposed controller response is simulated against the power level deviation in start-up and shutdown stages and compared with the other concerning controllers.

A Design of Model Following Optimal Multivariable BOiler-Turbine H_\infty Control System using Genetic Algorithm (유전 알고리즘을 이용한 모델 추종형 최적 다변수 보일러-터빈 H_\infty제어 시스템의 세계)

  • Hwang, Hyeon-Jun;Kim, Dong-Wan;Park, Jun-Ho;Hwang, Chang-Seon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Multivarialbe Boiler-Turbine H_\infty Control System Genetic Algorithm Weighting Functions $W_1$(s), $W_2$(s), and design parameter $\gamma$ that are given by Glover-Doyle algorithm, to optimally follow the output of reference model. The first method to do this is that the gains of weighting functions $W_1$(s), $W_2$(s), and design parameter are optimized simultaneously by genetic algorithm with the tournament method that can search more diversely, in the search domain which guarantees the robust stability of system. And the second method is that not only by genetic algorithm with the roulette-wheel method that can search more fast, in that search domain. The boiler-turbine H_\infty control system designed by theabove second method has not only the robust stability to a modeling error but also the the better command tracking preformance than those of the H_\infty control system designed by trial-and-error method and the above first method. Also, this boiler-turbine H_\infty control system has the better performance than that of the LQG/LTR contro lsystem. The effectiveness of this boiler-turbineH_\infty control system is verified by computer simulation.

  • PDF

Implementation of the robust $H^{\infty}$ speed controller by auto-tuning of the weighting function (하중함수의 오토 튜닝에 의한 강인한 $H^{\infty}$ 속도제어기의 구현)

  • Kim, Dong-Wan;Nam, Jing-Lak;Hwang, Gi-Hyun;Shin, Dong-Ryul;Byun, Gi-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.142-146
    • /
    • 2000
  • In this paper, we are applied the Genetic Algorithm(GA) to design of the robust $H^{\infty}$ speed controller by auto-tuning of the weighting function. GA is used to design of the weighting functions in the robust $H^{\infty}$ controller. To evaluate the performances of the proposed robust $H^{\infty}$ controller, we make an experiment on $H^{\infty}$ speed controller of an actual DC servo- motor system with nonlinear characteristics. Experimental results show that proposed controller have better performance than those of PD controller.

  • PDF

Derivation of Critical Functions of the Future Attack Helicopter Using QFD (QFD를 이용한 미래 공격헬기의 핵심기능 도출)

  • Lee, Jae-Won;Kwon, Yong-Soo;Ko, Nam-Kyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.348-357
    • /
    • 2013
  • This work describes an approach that contributes to derive from mission to critical functions of the attack helicopter under future battle space environment. An existing mission of the attack helicopter is limited to the only shooter oriented functions. In the future environment, mission and its functions of the helicopter might be much expanded. The functions should be derived by the top down approach based on systems engineering approach. In this point of view, this work describes network based future battle environment. From this environment, the missions of the attack helicopter are identified and optimized functions are derived through sequential procedures like from missions to tasks, tasks to activities, and activities to functions. The selected activities are obtained from the tasks using QFD. The weighting scores of the QFD are calculated by the AHP computational procedure. Finally the critical functions are presented through the similar procedure.